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Abstract

In theory, targets may be identified by the natural resonances present in the

late-time electromagnetic signals they scatter after illumination with transient wave-

forms. For perfectly conducting targets, the resonances in the electric and magnetic

fields take the form of first-order poles in the Laplace domain, and exponentially

damped sinusoids in the time domain. Although in theory a target’s late-time scat-

tering consists of an infinite number of poles, only a few of these are associated with

significant scattering terms. The frequencies and damping rates of these terms are

characteristic of the object’s size and shape. The goal of this research is to develop

an algorithm capable of distinguishing targets based on the late-time scattering they

exhibit.

Target identification is pursued in two stages called library building and li-

brary reading. To build the library, signatures of simple-shape targets (blocks,

cylinders, etc.) are developed based on estimates of the targets’ natural resonances.

The complex frequencies associated with the natural resonance modes are aspect-

independent, according to Singularity Expansion Method (SEM) theory. Poles are

identified for simulated and measured scattering from various targets using a novel

variant of the Matrix Pencil Method, called the Modified Total Least-Squares Ma-

trix Pencil Method. An all-aspect signature is produced by selectively grouping and

averaging the poles estimated from single-aspect measurements. The library is read

with a technique based on Kalman filtering, called Maximum A Posteriori (MAP)

Multiple-Model Adaptive Estimation. A linear, time-domain, state-space system

model is developed for the late time scattering. Several target filters, each represent-

ing different target types, are operated simultaneously. Residuals produced by each

filter are compared, and the filter based on the system model that best matches the

scattered signal represents the correct target.

xxii



The resulting algorithm is capable of accurately recognizing signals composed

of sums of damped sinusoids, even with signal-to-noise ratios approaching 0 dB. It is

able to distinguish between late-time signals but is dependent on both proper filter

tuning and accurate target signatures for effective discrimination. The technique

is suited to identification problems involving short ranges to the target, such as

classification of land mines and unexploded ordnance that may be shallowly buried

or concealed in foliage. This technique may also be employed on targets which are

concealed in baggage or behind walls.
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TARGET RECOGNITION USING LATE-TIME RETURNS FROM

ULTRA-WIDEBAND, SHORT-PULSE RADAR

I. Introduction

1.1 Background and Purpose

In this research a target recognition technique is developed that recognizes the

radar signatures of targets by comparison with stored models. The radar signatures

of interest are late-time, resonant or ‘ringing’ returns excited by an ultra-wideband,

short-pulse radar. An advantage of the technique developed in this research is that

the resonant frequencies found by the new technique are, in theory, independent of

the aspect, or direction from which a target is viewed [9, 13, 18, 90]. This allows

for a target description which takes up little memory, on the order of one hundred

parameters per object. Aspect-dependent techniques based on high-resolution radar,

by comparison, require on the order of one billion parameters to describe a single

complicated target [25]. Techniques based on synthetic aperture radar images or

other images require a similar amount of storage. The aspect-independent nature of

the signatures makes it desirable to excite the target’s natural ringing modes and

use them to distinguish it from other targets.

This work presents and characterizes a technique which can be a useful com-

ponent of a target recognition system. Such a system must provide acceptable confi-

dence of a target’s identity, with minimum dwell time and computation time required

for a decision. The research provides a working algorithm that quickly decides which

signature in a library best fits a set of sensor data. Such an algorithm can be used

in parallel with other algorithms, which make use of early-time radar scattering or
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other information. However, characterizing other algorithms and integrating them

with this one were outside the scope of this research.

A potential application of this target recognition technique that is of interest

to the Air Force is detection and identification of vehicles or other targets on the

ground and obscured by foliage or camouflage. Unmanned aircraft could employ

the technique to enable the precision engagement of hidden enemy ground forces

and ground-based air defenses early in a conflict. Other military applications may

include detection and identification of obscured targets such as weapons concealed

in clothing, in baggage, or behind walls [93]. The technique may also prove useful

for aerial detection of mines and other unexploded ordnance.

1.2 Impulse Radar Technology

This work is possible due to the convergence of new technology with existing

techniques and theory. The key technological advance is ultra-wideband, short pulse

radar. Ultra-wideband transmission and reception make an ‘almost ideal’ impulse

radar possible. In the past, impulse response was simulated and measured using

long frequency sweeps and post processing via Fourier Transform methods. Now,

ultra-wideband generators can excite near-impulse short pulses, illuminate the target

instantaneously and measure the near-impulse response directly [1, 108]. Existing

techniques of adaptive state estimation should make it relatively easy to extract

frequency components from the returned signal. As explained further in Section 2.1,

the wider the bandwidth of energy involved in a pulse, the shorter the pulse’s time

duration.

An ideal impulse, denoted in mathematics by the Dirac delta function δ(t),

has infinite frequency content. It contains constant amplitude power over all fre-

quencies. A realizable approximation of an impulse is a short, sharp pulse having

near-constant power per unit frequency over a very wide bandwidth. Transmit-

ters producing such short pulses are called ultra-wideband (UWB) sources. The
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High Power Microwaves Division of the Directed Energy Directorate of Air Force

Research Laboratory (AFRL/DEH) has years of experience developing UWB trans-

mitters for radar and other applications. AFRL/DEH, located at Kirtland Air Force

Base, New Mexico, has produced UWB pulses with constant power spectral density

(within 3 decibels (dB)) across the bandwidth from 35 megahertz to 4 gigahertz,

corresponding to a rise time of 85 picoseconds [108].

1.3 Problem Statement

Targets are assumed to be detected prior to the start of the identification

process by an unspecified detection sensor. Target locations are known. In this

research, targets are assumed to be stationary, but extending the technique to moving

targets should not be difficult. It only involves correcting the radar data to account

for relative velocity between the radar and the target using the approximate formula

fA = fT (1 + 2v/c) [128], where fA is the apparent frequency seen by the radar, fT is

the true radar frequency, v is target velocity, and c is the speed of light. The targets

are assumed highly conducting and will be modelled as perfect electrical conductors

(PEC). The PEC assumption simplifies the problem somewhat by neglecting terms

associated with surface resistance.

The recognition sensor illuminates the target with a series of ultra-wideband,

short radar pulses. The target recognition technique receives the backscattered il-

lumination from the target. It processes the late-time portion of the backscattered

signal via adaptive estimation techniques [76] based on the Kalman filter [65, 77].

The output will be a perceived target classification based on a match to a known

late-time signature. The output could be ‘unknown’ if there is insufficient confidence

to declare a target. The target recognition algorithm should work quickly, without

requiring extraordinary computational power.

The technique is only expected to work at relatively short ranges due to power

limitations. The late-time portion of the scattered signal is much weaker than the
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early-time or middle-time portions of the signal. It is typically 20 dB or more down

from early time, although the actual difference between early and late time depend

on the target being illuminated, the frequency of illumination, and the aspect from

which the target is viewed. Since a 12 dB reduction in target cross-section reduces

radar detection range by half [59], the effective range of any late-time technique is

limited to one quarter or less of the effective range of a technique making use of early

time radar scattering from a target.

Development of the algorithm requires good estimates of the complex natural

resonance frequencies, or Singularity Expansion Method (SEM) poles, of each known

target. Target scattering must be measured or simulated, and the late-time results

analyzed to provide estimates of the frequencies. Once radar data is generated, poles

must be estimated. An effective estimation code will be resistant to noise. It will

provide accurate estimates of poles, and will not provide additional, spurious results.

The pole estimation code is not required to work quickly because it is intended to

be used well in advance of the operation of the target recognition code. The pole

estimation code will be used to populate a library of target signatures that will be

utilized in real-time by the target recognition code. Scattering is much weaker in

late time than in early time, resulting in lower signal-to-noise ratios and increased

difficulty in accurately assessing the SEM poles from radar data.

1.4 Overview of Solution

A target recognition algorithm is developed based on a novel application of the

the Maximum A Posteriori version of the Multiple Model Adaptive Estimation algo-

rithm (MMAE-MAP) [76]. The algorithm inputs radar scattering information into

a bank of Kalman filters. Each filter contains a state-space model which represents

the expected late-time scattering from a known target. The filter models are based

on the complex resonant frequencies of the terms making up the late-time response.

Each target is represented by a different set of complex frequencies, in the form of
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Figure 1.1 Target Recognition System Diagram

damping and oscillating rates. The number of frequencies in the filter model also

varies from target to target. The scattered signal received by the radar is input into

each filter in the bank. Within each filter the signal is compared to the model. The

filter reports the residual, which is the difference between the actual measurement

and the best prediction of it before its arrival based on the assumed model. Residuals

are scaled and compared, and the filter generating each residual stream is assigned

a probability of being correct. When all filters reach steady-state operation, or at

the end of the data set, the algorithm is terminated. The filter with the highest

probability at termination is reported as the correct match. A χ2 test [44, 101] on

the residuals of the best-matching filter is intended to provide additional indication

that the filter adequately matches the signal. A diagram of the recognition algorithm

is shown in Figure 1.1.

For comparison, a target recognition algorithm based on extinction pulse con-

volution [113] was implemented. The E-pulse technique had much less tolerance to
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white noise than the MMAE-MAP technique. The signal-to-noise ratio required for

successful target recognition in 90% of attempts using the E-pulse was about 20 dB

higher than for the MMAE-MAP method.

The target recognition algorithms were tested with measured and simulated

data. A variety of simple geometric shapes (cylinders, spheres, blocks) were measured

using swept frequencies over as wide a bandwidth as possible. Target responses were

predicted for simple shapes, and for two simple shapes in close proximity, using

computational electromagnetics codes. Computational results were compared to

measured and theoretical results when available. Frequency-domain results from

measurements and simulations were transformed into the time domain using an

Inverse Fast Fourier Transform. The resulting equivalent impulse response was the

source of late-time data. This data was used both as a means to estimate natural

frequencies of targets and as input data for the target recognition algorithm.

To estimate the natural frequencies of the targets from their late-time scatter-

ing, a novel variant of the Matrix Pencil Method (MPM) [119], denoted the Modified

Total Least-Squares Matrix Pencil method (M-TLS-MPM) was developed, tested,

and implemented. Existing variants of MPM have a published history of application

to late-time scattering problems [48,49,51]. M-TLS-MPM provides some additional

noise resistance over published versions of MPM at lower signal-to-noise ratios. Pole

estimates from various aspect angles of the same target were averaged to produce

all-aspect signatures. In theory, the same poles are present at all aspect angles, but

pole estimates varied somewhat from one angle to the next. If a target can be ad-

equately described from many or all aspect angles by a single set of poles, a target

recognition system can easily store signatures for many targets in its library.

The most significant limiting factor in the success of this algorithm is the

quality of the signatures associated with each target type. These signatures are based

on estimates of the natural resonance frequencies of each target. The estimates varied

little in oscillating rate ω, but somewhat more in damping rate Ω, as aspect angle

1-6



Figure 1.2 Down Converter Diagram

was varied. Resonant frequencies were found which supported target recognition

and provided a degree of aspect independence, but they did not in all cases match

previously published poles found by other techniques.

Given that late time returns last on the order of nanoseconds, the identification

algorithm is unable to process radar data in real time. In a realistic application

of this system, the transmitted and received radar signals ȳR(t) and ūR(t) can be

reduced in frequency via a down converter, shown schematically in Figure 1.2. The

down converter reduces the frequency of the returned radar signal by mixing it with

the output of a local oscillator operating at a frequency between the radar signal

and the center frequency of a band-pass filter known as the intermediate filter (IF).

The output of the IF is then sampled. This receiver architecture is called super-

heterodyne [40]. An alternative to a down converter is simply to sample the returned

signal at its actual frequency, record it and play it back at a lower speed, effectively

reducing the frequency. The reduced-frequency radar signals ȳ(ti) and ū(ti) from the

down converter or recorder are fed into the target recognition algorithm.

1.5 Contributions

The major contribution reported herein is the novel application of estimation

techniques based on Kalman filters to the problem of target recognition via Singul-
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arity Expansion Method (SEM) parameters. The application of the MMAE-MAP

technique to scattering predicted by the SEM is developed in detail. The algorithm is

tested against sets of synthetic data which fit the theoretical description of late-time

scattering according to SEM. It is also tested with measured and simulated radar

data, for which the SEM frequencies are estimated. The new target recognition

algorithm is shown to be resistant to additive, white, Gaussian noise.

To date, all efforts at target identification via late-time scattering involve res-

onance annihilation (RA) techniques [14, 18, 52, 58, 92, 118], a generalized likelihood

ratio test (GLRT), [90,91] an autoregressive filter with exogenous input (ARX), opti-

mal instrumental variables (IV) or an autoregressive moving average with exogenous

input (ARMAX) [24, 25]. The RA techniques, E-pulse, ξ-pulse, K-pulse, S-pulse,

and resonance annihilation filter, rely on convolution of a predetermined pulse with

the incoming data to eliminate specific frequency components. This research applies

techniques based on Kalman filtering to the problem of resonance-based target recog-

nition for the first time. This is also the first comparison of Kalman-based techniques

and resonance annihilation techniques. Existing RA methods require signal-to-noise

ratios (SNR) of 20 to 42 dB, depending on target aspect and number of targets, to

achieve a 90 percent likelihood of correctly identifying the target [92]. For a GLRT

method, the required SNR for a 90% chance of correct ID was 2 to 7 dB [90, 91].

For both RA and GLRT techniques, tests involved simple wire models. The ARX,

IV and ARMAX methods have been applied only to cones and cylinders, with an

eye toward cleanup of unexploded ordnance (UXO) [24, 25]. The research involving

ARX, IV and ARMAX used a 25 dB SNR signal and tried to estimate frequencies as

continuous variables instead of simply selecting a target type. Correct identifications

ranged from 40% to 100% for ARX and 60% to 80% for IV. ARMAX results were

not included, but were characterized as poor.

In a comparison between the MMAE-MAP target recognition technique and

the E-Pulse, the former identified signals in more than 90% of cases when the SNR
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was above -7 dB, while the E-Pulse required an SNR above 12 dB for similar results.

This comparison used data that was not representative of actual targets, as explained

in Sections 3.3.1, 4.3 and 4.5, because the E-Pulse had poor results with simulated

scattering data.

The MMAE-MAP technique successfully identified targets based on their sim-

ulated scattering. Targets examined in this research included cones, cylinders, rect-

angular blocks, and a square plate, all of which were modeled as perfect electrical

conductors. The MMAE-MAP technique was often able to identify targets correctly

with SNR of 3 dB, although in some cases an SNR of 7 dB was required. In a

few cases, a higher SNR was required to achieve a 90% or greater successful rate

of identification, although the results may be improved by additional filter tuning

experiments.

Another contribution was developing an improved version of the Matrix Pen-

cil Method (MPM) which combines the Low-Rank Hankel Approximation (LRHA)

used in the Modified Matrix Pencil Method 3 (MMP3) [66,69] with the Total-Least-

Squares (TLS) version of MPM [51]. The new version, Modified TLS-MPM, de-

creases the estimation error in some low-SNR cases by 10 to 15 dB compared to the

TLS-MPM, at the cost of a significantly increased number of computations. It shows

a slight improvement in estimation error compared to the MMP3 and reduces the

computational load slightly. It was found that four iterations are sufficient to gain

essentially all of the improvement that can be gained from the LRHA.

The LRHA is also able to suppress additive, white, Gaussian noise in signals

consisting of a sum of damped sines, with a reduction of 11.7 dB observed at many

noise levels. The LRHA has been characterized more completely here than in previ-

ous literature, and recommendations have been made for its use.
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1.6 Organization of Report

Chapter II presents background information on the areas of research presented

here. Chapter III discusses signal processing research applied toward developing a

library of target signatures. In Chapter IV, stochastic estimation techniques used to

compare signature data to the library of signatures are presented. Conclusions are

summarized at the end of each chapter and in Chapter V. Additional work performed

during this research which was not central to the problem of target recognition is

presented in appendices.
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II. Background

2.1 Notation, Units and Some Definitions

Mathematical notations used in this document include: x̄ is a column vector,

x̄∗ is its complex conjugate, x̄T is its transpose (always non-conjugate unless followed

by an asterisk), and x̄T∗ is its conjugate or Hermitian transpose. An estimate of the

correct value of x̄ is denoted ˆ̄x. Vector r̃ is a unit column vector in the direction of

r̄, and A is a matrix. Superscripts i, r, and p indicate that a vector is an incident

or reflected (scattered) field, or a field’s polarization, respectively.

A primed variable, such as r̄′, has the same domain as its unprimed counterpart,

r̄ in this case. The primed and unprimed variables are independent. Primed and

unprimed variables are used in Green’s functions to take into account two variables,

typically position vectors of an energy source and a point of observation. Typically

either the primed or unprimed variable will be a variable of integration while the

other will not. Am×n indicates the matrix A has m rows and n columns.

A variable with superscript L (e.g., ΦL(s)) is the Laplace transform of the

indicated variable (otherwise Φ(t)). The Laplace transform is taken to be two-sided

except where stated; in other words, it involves the integral from −∞ to ∞, while

the inverse Laplace transform is taken along the Bromwich contour from ΩB − j∞
to ΩB + j∞ [10, 64]. The Laplace transform is defined as

L{Φ(t)} = ΦL(s) =

∫ ∞

−∞

Φ(t) exp(−st)dt, (2.1)

where s is a complex number. The inverse Laplace transform is

L−1{ΦL(s)} = Φ(t) =
1

j2π

∫ ΩB+∞

ΩB−∞

ΦL(s) exp(st)ds (2.2)

A variable with superscript F (ĒF (ω)) is the Fourier transform of the indicated

variable (Ē(t)). The Fourier transform is also two-sided, integrated from −∞ to ∞,
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while the inverse Fourier transform is integrated along the jω axis from −j∞ to

+j∞ [62, 100]. The Fourier transform is defined as

F{Ē(t)} = ĒF (ω) =

∫ ∞

−∞

Ē(t) exp(−jωt)dt (2.3)

where ω is taken to be real unless otherwise specified. The inverse Fourier transform

is

F−1{ĒF (ω)} = Ē(t) =
1

2π

∫ ∞

−∞

ĒF (ω) exp(jωt)dω (2.4)

The Fourier transform and its inverse can be defined with different limits of

integration. If the infinite limits are replaced with a finite time or frequency window,

i.e. replace ∞ and −∞ with w and −w, the Fourier transform and its inverse can be

applied to limited sets of data. The transform assumes that whatever was presented

in the band (−w,w) is repeated outside the band. That leads to the notion of

zero padding to extend the bandwidth of data, discussed further in Appendix D,

Section D.2.

When discussing measured radar data, the term ‘broadside’ is used. Broadside

incidence occurs when a major feature such as the flat face of a plate or the length of

a long cylinder is perpendicular to the direction of propagation of the incident radar

wave. Picture yourself looking into a mirror. If you can see your own face, you see

the broadside of the mirror. Broadside is used as an azimuth reference. Broadside

illumination occurs when the incident wave approaches the object’s surface in a

direction parallel to the surface normal, but in the opposite direction. In broadside

illumination, much (but not all) of the energy is scattered from the object in the

direction of the surface normal. If you see another object in the room reflected in

the mirror, then the aspect of the mirror you are seeing is off-broadside at some

angle away from the surface normal. Coordinate systems for all targets used in this

research are discussed in Appendices B and C.
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There are several synonymous terms for the function of the algorithm devel-

oped in this research. The process could be termed identification, classification,

recognition, characterization, etc. Identification, in United States military usage,

means deciding whether a target is friendly, hostile, or neutral. That decision is be-

yond the scope of this research. The algorithm developed in this research categorizes

a target according to type, which relates to the military term ‘recognition’ [55]. The

terms recognize, identify, classify, and characterize will be used interchangeably in

this document. The word ‘target’ is used interchangeably with the word ‘object’ to

signify a physical object being deliberately illuminated by a radar.

2.1.1 Complex Variables. The complex frequency s = Ω + jω has units

of nepers per second for the real (damping) component Ω, and radians per second

for the imaginary (oscillating) component jω [4, 60]. The oscillating component of

frequency, ω, has a ‘cyclic’ companion quantity f = ω/(2π) defined in terms of

cycles per second or hertz. In the literature, the damping component of frequency

Ω has no comparable ‘cyclic’ quantity F = Ω/(2π). Since damping and oscillating

are joined in the complex frequency s = Ω + jω, a consistent description for them

based on either radians or cycles is needed. Since it is often more convenient to

describe the oscillating component of frequency in terms of hertz, gigahertz, etc., a

‘cyclic’ unit for damping is needed as well. That then allows the convenient relation

s = 2π(F + jf) = 2πΞ. While there is no recognized unit for Ξ, some authors apply

hertz to it as well as to f . That convention is followed in this document.

The term pole location, or pole, refers to a complex frequency where the un-

known (field) quantity blows up to infinity. Poles of complex-valued functions appear

in the form (s − sn)−p.

Resonant frequency and natural frequency are the same thing. Each term refers

to poles associated with an object. Energy on the surface of the object resonates

according to the object’s resonant or natural frequency.
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To find the effect of the pole in the time domain, the inverse Laplace trans-

form, Equation (2.2), is applied, requiring the integration of a complex function with

respect to a complex variable. Each pole is transformed into a time-dependent term,

such as a scattering or current mode, in a series. If integration is performed around

the pole by Cauchy Residue Theorem [64,125], the resulting value is the residue. In

the time domain, the residue is the coefficient associated with the pole.

For electromagnetic quantities in the Laplace domain, a time variation term

exp(st) is assumed, equivalent to the exp(jωt) typically assumed for narrowband

electromagnetic problems. For quantities in the Fourier domain, exp(jωt) is assumed.

2.1.2 Bandwidth. The terms narrowband, wideband, and ultra-wideband

(UWB) are a source of confusion in scientific and technical literature. Throughout

this work, the term ultra-wideband refers to signals with frequency content covering a

decade or more of nominal bandwidth. In other words, the nominal highest frequency

is ten or more times the nominal lowest frequency. Here, the 3 dB (half-power) level

is used to define the nominal bandwidth, so the signal does have some power outside

the nominal band. Absolute bandwidth can be considered, such as 2 gigahertz,

or fractional bandwidth, in which the absolute bandwidth is divided by the center

frequency and displayed as a percentage. A system with a decade of bandwidth

will have a fractional bandwidth of approximately 163%. The United States Federal

Communications Commission (FCC) defines a UWB system as one with greater than

500 MHz of bandwidth or 20% fractional bandwidth, using the -10 dB power limits

to define high and low frequencies [32]. The FCC ‘ultra-wide’ definition in Section

15.503 of the FCC Rules and Regulations is in fact quite narrow when compared

to the short-pulse generators in the literature [108]. A third measure of bandwidth,

more appropriate to this research, is band ratio. Band ratio is the highest nominal

frequency divided by the lowest. Therefore a system with a decade of bandwidth

has a band ratio of 10.
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In this report a narrowband signal is defined as one with less than 1% fractional

bandwidth, measured from the -20 dB points. Any signal with fractional bandwidth

greater than 1% and less than 163% will herein be considered wideband. Although

FCC defines UWB, it does not define either narrowband or wideband. The 1%

definition used here is comparable to FCC rules 15.231, 15.237 through 15.241, and

15.247, which allow devices with similar but slightly narrower bandwidths to use

frequencies in various bands [32].

Short-pulse UWB signals are not swept through a band one frequency at a

time. The bandwidth in the UWB case refers to instantaneous bandwidth, in which

all frequencies in the band are present in a single pulse. The shorter in time a pulse

is, the wider its bandwidth in the frequency domain.

This work builds on research in electromagnetic scattering, signal processing,

and stochastic estimation and control. Background information in each of these

areas is presented in Sections 2.2, 2.3 and 2.4 respectively.

2.1.3 Linear Algebra Terms. If a matrix has as many rows as columns, it

is square. If it has more rows, it is called thin or overdetermined. If it has more

columns than rows, it is called fat or underdetermined. A square matrix A is unitary

if the transpose of its conjugate, AT∗, equals its inverse, A−1. A unitary matrix has

a determinant with a magnitude of 1 [45]. Separate symbols for conjugate (A∗) and

transpose (AT ) are used, and both are employed when the conjugate transpose is

desired (AT∗). The conjugate transpose is also called the Hermitian transpose as well

as the adjoint matrix. A real square matrix A is called normal if AAT∗ = AT∗A.

A square matrix A composed of column vectors Āi is orthogonal if ĀT
i Āj = 0

for all i 6= j. It is orthonormal if ĀT
i Āj = 0 when i 6= j and = 1 when i = j, or, using

the Kronecker delta function, ĀT
i Āj = δij. Put differently, the matrix is orthonormal

if ATA = AAT = I, where I is the identity matrix.
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Eigenvalues and eigenvectors are solutions of the eigenvalue problem Ax̄ = λx̄,

where A is a known, real, square matrix, λ are the complex eigenvalues and x̄ are

the complex eigenvectors. Generalized eigenvalues and eigenvectors are solutions of

the generalized eigenvalue problem Ax̄ = Bλx̄, where B is a known, real, square

matrix of the same size as A.

Square matrices have eigenvalues, while rectangular matrices do not. For a

rectangular matrix, singular values are found instead. They are related this way:

the singular values of a complex matrix C are the real, nonnegative square roots of

the eigenvalues of CT∗C. Both CT∗C and CCT∗ are positive semidefinite matrices

[38, 46], meaning that all of their eigenvalues are positive or zero. Right singular

vectors of a complex, rectangular matrix C are the same as the eigenvectors of the

matrix CT∗C, while left singular vectors of C are the eigenvectors of CCT∗.

If a matrix is square and positive definite, a square root can be computed for it.

Positive definite means the eigenvalues of the matrix are all greater than zero. While

a real scalar has only one square root of ambiguous sign, a matrix has many possible

formulations of the square root. In this research the Cholesky factorization [77] is

used to compute the square root C
√

A of the positive definite matrix A such that

C
√

A
C
√

A
T

= A (2.5)

where C
√

A has the same number of rows and columns as A. Note that Equation (2.5)

does not uniquely define the Cholesky square root. The Cholesky square root is a

lower triangular matrix. If a matrix has a single element, the Cholesky square root

is the same as the square root of a scalar.

2.1.4 Dyadic Operations. Vectors can be multiplied in three ways that

produce either a scalar, vector, or dyadic answer. It is common in electromagnetics

literature to display matrix multiplications in terms of the dot, cross, and dyadic
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products. However, in signal processing and stochastic estimation literature, it is

more common to use linear algebra notation.

The dyadic product, E = āb̄, or outer product of two vectors ā and b̄ is a

matrix formed by transposing the second vector and multiplying.

E =











a1

a2

a3











(

b1 b2 b3

)

=











a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3











(2.6)

If two vectors are shown side-by-side with no dot or cross between them, as in āb̄,

dyadic multiplication is implied. Linear algebra notation for the dyadic product of

vectors ā and b̄ is E = āb̄T .

2.2 Scattering Theory

Any object illuminated by an electromagnetic wave will scatter some of the

energy in, generally speaking, all directions. Actual prediction of the scattering

magnitude in each direction is difficult, but can be accomplished exactly for a limited

set of scatterer geometries through Green’s functions [129], plane wave spectra [27]

and modal solutions to boundary value problems [4,23,116]. However, for scattering

from real, three-dimensional, objects of interest, approximate techniques are typically

used, and these fall into the asymptotic and computational categories.

Asymptotic techniques improve in accuracy as frequency increases. They in-

clude geometric optics (GO) and its extensions: the geometric theory of diffraction

(GTD) and the uniform geometric theory of diffraction (UTD) [83]. Other asymp-

totic techniques are physical optics (PO) and its extension, the physical theory of

diffraction (PTD) [4, 83]. Asymptotic models have been used to gain insight into

measured data by identifying scattering centers, which are features on an object

which reflect significant energy to the radar. At sufficiently high frequencies, an

object may be approximated as a collection of scattering centers [34,107].
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Computational techniques solve Maxwell’s equations numerically, over small

segments of the scatterer, along with the interaction, or mutual impedance, between

each segment. The equations may be solved in differential or integral form and may

be formulated as either time domain or frequency domain equations. Scattering from

a target can be regarded as a time-invariant transfer function, so the time-domain and

frequency-domain solutions can be related to each other via the Fourier transform.

Computational techniques include the method of moments (MoM), in which integral

equations are discretized, and techniques which discretize differential equations, such

as finite difference (FD), finite volume (FV) and the finite element method (FEM),

which can be formulated in either the frequency or time domain [105]. Computational

techniques simulate electromagnetic interaction (propagation, scattering, surface and

volume currents, etc.) to a high degree of fidelity, so they are also known as scattering

simulations.

The results from one analytic technique, the Singularity Expansion Method

(SEM) [6,9], are the theoretical basis for the target recognition algorithm presented

herein. Various authors [110, 110, 114, 124, 131] have used SEM in conjunction with

computational methods to identify natural resonances of targets.

2.2.1 The Singularity Expansion Method. Measurements involving illu-

mination of simple shapes by ultra-wideband, short-pulse radar have led to an in-

teresting observation. The strong initial return from an object was followed by a

weaker signal that took the form of a damped sinusoid or sum of damped sinusoids.

Simulated scattering from a cylinder is shown in Figure 2.1. The late-time portion

of the signal is shown in a different scale in Figure 2.2, where the domination of

the return by a single damped sinusoid is obvious. The frequency of oscillation of

the damped sine shown in Figures 2.1 and 2.2 is 665 MHz. With the same target

and azimuthally-polarized illumination, a more complicated late-time return occurs,

indicating the presence of different significant, damped-sine terms in the signal.
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Figure 2.1 Simulated time-domain scattering from a cylinder, six inches long and
two inches in diameter, axially-polarized illumination with bandwidth 0.1 to 18 GHz
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Figure 2.2 Simulated time-domain scattering from a cylinder, six inches long and
two inches in diameter, axially-polarized illumination with bandwidth 0.1 to 18 GHz,
emphasizing late-time scattering
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This observation led to attempts to formulate an analytic expression for this

phenomenon. The Singularity Expansion Method (SEM), developed by Baum in

1971 [6, 9], extends scattering theory to account for ultra-wideband illumination.

SEM has been applied to a limited number of targets so far. There are theo-

retical results for a sphere [6] and wire loops [20, 134], plus results based on MoM

or other integral equations for a variety of other targets: polygonal wire loops [124],

elliptical wire loops [114], wire dipoles [110, 110, 131], cylinders, rectangular plates,

rectangular boxes, etc. Modal solutions have been found for bodies of revolution [86].

Most of these targets were assumed to be isolated in free space. Some solutions exist

for wires in the presence of ground planes [133], objects in or near lossy, dielectric

media [12,37,42], coupled system consisting of two wires or two loops [43], etc.

Electromagnetic scattering due to narrowband illumination is usually approxi-

mated as single-frequency, or zero-bandwidth, illumination which must have infinite

time duration according to Fourier transform theory [100]. Conversely, in SEM, scat-

tering from ultra-wideband, short-pulse sources is approximated by scattering from

an impulse with infinite bandwidth and zero time duration. A target’s response

(surface current, scattered field, current in a circuit or waveguide, etc.) to an impul-

sive forcing function (incident wave, impressed voltage or current, etc.) is treated

as a series of isolated singularities in the complex frequency s = Ω + jω plane. Iso-

lated singularities include poles of integer order, essential singularities, and branch

points [64]. Branch points may be of integer order, or may be algebraic, logarithmic,

or transcendental [125].

To clarify time-domain and frequency-domain concepts, representations of the

Dirac delta function in frequency and time domains are shown in Figures 2.3 and 2.4.

The dotted lines in the two figures are Fourier Transform pairs, as are the solid

lines. Figure 2.4 shows a time domain plot in which the solid line represents a delta

function δ(t). The line extends upward at t = 0 to the top of the graph, while the

function actually extends upward to infinity; the area under the function is unity.
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Figure 2.3 Two Dirac Delta Functions (dotted) and constant (solid), Frequency
Domain
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Figure 2.4 Dirac Delta Function (solid) and cosine (dotted), Time Domain

2-11



The dotted line is a sinusoid, which is the time domain transform of the pair of

delta functions in the frequency domain, shown in Figure 2.3. In the frequency

domain plot, the sum of two delta functions, δ(ω − 25) + δ(ω + 25), is shown with

dotted lines extending toward infinity at ω = −25 and ω = 25. These two delta

functions represent power concentrated exactly at single frequencies. The resulting

time domain signal in Figure 2.4 is a single frequency sinusoidal signal that extends

for all time, from −∞ to ∞. The solid line in Figure 2.3 is a constant. It is the

frequency domain transform of the delta function, solid line, in Figure 2.4.

To develop SEM, it is useful to start with a description of forced response. The

forced response of an object of volume V to electromagnetic stimulation F̄L, which

may be an incident wave, an impressed current, etc., is [7]:

∫

V

KL(r̄, r̄′, s) · J̄L(r̄′, s)dV ′ = F̄L(r̄′, s) (2.7)

where r̄ and r̄′ are position vectors to any point in the volume V of the object, s is

the Laplace-domain frequency, and the equation kernel KL is based on the Green’s

function of the target and its surroundings. The forcing function F̄L and the object’s

physical configuration determine the response J̄L, which may be a current or a

scattered field. An equation of this form is called a Fredholm integral equation of

the first kind [127]. If the object is a perfect electrical conductor (PEC), the intgral

is taken over the surface area D rather than the volume V , and the position vectors

trace the surface rather than the volume of the object.

Now consider an unforced response. A PEC object which is not illuminated

obeys this homogeneous integral equation:

∫

D

KL(r̄, r̄′, s) · J̄L(r̄′, s)dD′ = 0̄ (2.8)

in which the integral is taken over the surface D instead of the volume V . Every

nontrivial solution to this equation is an unforced response. Unforced responses are

any responses which may exist (J̄L 6= 0̄) in the absence of excitation. The kernel is
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dependent on the frequency s. The unforced response may exist for some values of s

and not others. The values for which an unforced response exists are called natural

frequencies. Because excitation may be absent, neither the polarization nor angle

of incidence of an exciting source has an effect on these natural frequencies. The

total unforced scattering may be found from the sum of the scattering due to each

natural-frequency term.

Unforced response includes response after excitation has ceased. Natural modes

that make up the unforced response represent energy stored, briefly, on the surface of

the object. The energy was deposited there by an incident wave or other excitation.

An object’s energy-storing ability is determined by the object itself, although the

amount of energy stored is related to the amount of energy added to the system by

an incident field. That means that some quantities in a mathematical representation

of unforced scattering are functions of the incident wave, but the natural frequencies

themselves are not [6].

Scattering from a finite-sized, perfectly conducting object in free space due

to an impulse is found to be an infinite series of first order poles plus an entire

function [6, 9]. The first-order poles, (s − sn)−1 correspond to damped sinusoids

(exp(snt)u(t)) in the time domain via the Laplace transform, as demonstrated by:

(s − sn)−1 =
∫ ∞

0
exp[−(s − sn)t]dt

=
∫ ∞

0
exp(snt) exp(−st)dt

=
∫ ∞

0
exp(−Ωnt) exp(−jωnt) exp(−st)dt

=
∫ ∞

−∞
exp(−Ωnt)[cos(jωnt) − j sin(ωnt)]u(t) exp(−st)dt

= L{exp(−Ωnt)[cos(jωnt) − j sin(ωnt)]u(t)} (2.9)
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An entire function is a function with no singularities in the finite s plane,

but which may have one at infinity [64, 123]. If the object is on or near a ground

plane or embedded in a lossy dielectric volume, two branch points of order 1 are

introduced in the s-plane, with a branch cut between them [37]. A branch point

is a point at which a complex-valued function may have more than one value [64].

The branch points can cause discontinuity in the impedance or admittance matrices

developed in integral-equation electromagnetics simulations. Giri [37] analytically

predicted branch points in the kernel function K(r, r′, s) for a dipole antenna in a

lossy medium, but found their effect was negligible for the cases studied.

If a PEC object is resistively loaded, the SEM series includes second order poles,

(s − sn)−2, corresponding to damped sinusoids multiplied by ramps (t exp(snt)) in

the time domain. Given targets constructed of metal, the effect of the second order

poles should be negligible compared to the effect of the first-order poles [132].

A plane wave in space can be defined by its electric field. In the frequency

domain, the field is

ĒiL(r̄, s) = E0f
L(s)e−γr̃i·r̄r̃p (2.10)

while in the time domain, it is

Ēi(r̄, t) = E0f(t − r̃i · r̄
c

)r̃p (2.11)

where f(t) is the waveform, and E0 is the magnitude of the plane wave. The position

vector r̄ refers to any point in space at which the plane wave is observed at a given

time t. The unit vector r̃i indicates the direction of propagation of the incident

waves. The polarization direction, or direction of the electric field, is given by r̃p.

The propagation constant γ is equal to s/c in free space, where c is the speed of light.

An impulse is defined as the Dirac delta function f(t) = δ(t) in the time domain,

which has the transform fL(s) = 1 in the Laplace frequency domain. Current density

J̄ on the object’s surface D is related to the incident field via
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ĒiL(r̄D, s) =

∫

D

KL(r̄D, r̄′D, s) · J̄L(r̄′D, s)dr̄′D (2.12)

in which KL(r̄D, r̄′D, s) is a dyadic kernel related to the Green’s function for the

object [8,18], and r̄′D is the position vector to any point on the object’s surface. This

is a restatement of Equation (2.7) in which the forcing function is an electric field

and the response is a surface current. Since ĒiL(r̄D, s) is time limited, there is a

period when equation (2.12) is unforced.

Figure 2.5 Scatterer Illuminated by Plane Wave

Now consider a time domain representation of the incident signal, an impulse.

The duration of the pulse is zero, so the position of the wave relative to the target can

be defined precisely. The time period can be distinguished during which the incident

pulse passes over the object from the time after the pulse has passed. After the

forcing function ceases, i.e., after the incident wave has passed, the object exhibits

unforced response, or ringing, for a brief period called “late time”, explained in

Section 2.2.2. In an actual radar application, an ultra-wideband, short-duration
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pulse would be used in place of the theoretical impulse. Short pulses produced

in the laboratory have rise times on the order of picoseconds, and durations of a

few nanoseconds. If a long radar pulse were used, the ringing in late-time could

be confounded with early-time and the information in late-time ringing would be

unusable.

Assuming that fL(s) = 1, the solution to the surface currents induced on the

object by the field in Equation (2.12) is given by [9,18]:

J̄L(s) = E0

∑

n

ηn(r̃i, r̃p)ν̄n(r̄D)(s − sn)−pn exp(st0 − snt0) + F̄L(r̃i, r̃p, r̄, s) (2.13)

where ηn is the coupling coefficient and ν̄n is the natural mode, normalized to a max-

imum value of one. The coefficient contains magnitude and phase information about

the natural frequency response, while the mode gives its direction and distribution

on the object’s surface. The turn-on time t0 defines the point in the time domain

after which the SEM representation becomes valid. The integer pn is the order of the

pole, and is equal to one for finite, perfectly electrically conducting objects. F̄ is an

entire function which may have a value of zero. It is the sum of the entire functions

associated with each pole term according to Mittag-Leffler’s Theorem [125]. This

theorem states that a partial fraction expansion of a meromorphic function consists

of an entire function plus a series of pole terms, each accompanied by a polyno-

mial [18, 125]. The vector r̄D is the position of any point on the object’s surface (if

conducting) or volume (if dielectric). The origin is at the center of a notional sphere

of minimum radius to enclose the target completely, as shown in Figure 2.5. The

direction of propagation of the incident fields, r̃i, and the scattered fields, r̃r, are

also illustrated in Figure2.5.

The coupling coefficient is [18]
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ηn(r̃i, r̃p) =

r̃p ·
∫

D

exp(−γr̃i · r̄D)ν̄n(r̄D)dr̄D

∫

D

∫

D

ν̄n(r̄D) · ∂

∂s
K(r̄D, r̄′D, s) |s=sn

·ν̄n(r̄′D)dr̄′Ddr̄D

(2.14)

and the mode is defined by:

∫

D

KL(r̄D, r̄′D, s) · ν̄n(r̄′D)dr̄′D = 0̄ (2.15)

The surface currents on the scatterer give rise to a scattered electric field given

by:

ĒrL(r̄, s) =
E0 exp(−γr̃r · r̄)

4πr

∑

n

fL(sn)ΛnMn · r̃p(s− sn)−pne(s−sn)t0 + ḠL(r̃i, r̃p, r̄, s)

(2.16)

Here ḠL is the scattering due to the entire function F̄L. In Equation (2.16), the

scattering coefficient Λn, and the scattering matrix Mn are defined as

Λn = −snµ0

[∫

D

∫

D

ν̄n(r̄D) · ∂

∂s
K(r̄D, r̄′D, s) |s=sn

·ν̄n(r̄′D)dr̄′Ddr̄D

]−1

(2.17)

Mn =

[∫

D

exp(−γnr̃
i · r̄D)Ti · ν̄n(r̄D)dr̄D

] [∫

D

exp(γnr̃
r · r̄D)Tr · ν̄n(r̄D)dr̄D

]

(2.18)

Integrals are taken over the scatterer’s surface, D. The transverse matrices found in

Mn are

Ti = I − r̃ir̃iT (2.19)

Tr = I − r̃rr̃rT (2.20)
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where I is a 3 × 3 identity matrix. The two unit vectors are joined in a dyadic

product, (r̃ir̃iT ) or (r̃rr̃rT ), also called an outer product, which produces a rank-one

matrix. Vectors are assumed to be column vectors, so the incident direction r̃i can

be defined as

r̃i =











ri
x

ri
y

ri
z











(2.21)

Here Cartesian (x,y,z) coordinates are shown, but any orthogonal system such as

spherical, cylindrical, etc., could be used. The outer product of the two vectors is a

dyad:

r̃ir̃iT =











ri
xr

i
x ri

xr
i
y ri

xr
i
z

ri
yr

i
x ri

yr
i
y ri

yr
i
z

ri
zr

i
x ri

zr
i
y ri

zr
i
z











(2.22)

The transverse T matrix is similar to an orthogonal matrix transformation called

the Householder Reflection [38]:

P = I − 2
v̄v̄T

v̄T v̄
(2.23)

Using the inverse Laplace transform, the time domain scattered field is

Ēr(r̄, t) =
∑

n

C̄ne
sn(t−r/c+t0)u(t − r/c + t0) + Ḡ(r̃i, r̃p, r̄, t) (2.24)

where

C̄n =
E0

4πr
ΛnMn · r̃p exp(−snt0) (2.25)

and the incident field is assumed to be an impulse, i.e., fL(s) = 1.

The time axis (tl = t − r/c + t0) is now shifted so the origin is the start of

retarded late time; that is, the late-time portion of the scattered signal as seen by
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a radar receiver. During late time, the entire function Ḡ is identically equal to

zero [15]. The scattered field is then

Ēr(r̄, tl) =
∑

n

C̄n exp(sntl)u(tl) (2.26)

The complex natural frequency is s = Ω + jω, where Ω and ω are both real.

Ω is the decay rate, or growth rate if positive, and ω is the frequency of oscillation.

Thus

exp(stl) = exp(Ωtl) exp(jωtl) = exp(Ωtl)[cos(ωtl) + j sin(ωtl)] (2.27)

In this document, complex-valued fields are used to account for phase shifts in the

frequency domain. In the time domain, all fields are considered real, so all imaginary

terms must sum to zero. Thus every pole with nonzero ω is part of a conjugate pair;

another pole k has the complex conjugate of both the frequency (sk = s∗n = Ωn−jωn)

and the coefficient (C̄k = C̄∗
n). If a pole has ωn = 0, it can be treated as the sum of

two identical poles, each with a real coefficient. The scattering term associated with

each conjugate pair or real-axis pole is called a mode. Because negative oscillating

frequencies are treated explicitly as −jωn, unsigned oscillating frequencies ωn can

be considered to be positive. So Equation (2.24) can be put in the following form,

now summing over modes m instead of poles n:

Ēr(tl) =
∑

m

[C̄m exp(Ωmtl + jωmtl) + C̄∗
m exp(Ωmtl − jωmtl)]u(tl) (2.28)

The complex coefficients can be separated into rectangular components via C̄m =

Ām +jB̄m and C̄∗
m = Ām−jB̄m, where Ām and B̄m are both real, so Equation (2.28)

can be rewritten as
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Er(tl) =
∑

m exp(Ωmtl)u(tl)[Ām exp(jωmtl)

+jB̄m exp(jωmtl) + Ām exp(−jωmtl) − jB̄m exp(−jωmtl)]

=
∑

m exp(Ωmtl)u(tl)·

{

Ām[cos(ωmtl) + j sin(ωmtl)] + jB̄m[cos(ωmtl) + j sin(ωmtl)]

+Ām[cos(jωmtl) + sin(−jωmtl)] − jB̄m[cos(jωmtl) − j sin(−jωmtl)]
}

= 2
∑

m exp(Ωmtl)[Ām cos(ωmtl) − B̄m sin(ωmtl)]u(tl)

(2.29)

In the complex frequency plane (the s-plane or Laplace domain), each term

of Equation (2.29) corresponds to a conjugate pair of first order poles, and the

weighting coefficients Ām and B̄m are the real and imaginary parts of the residues

of each pole. Transformed into the time domain, the effect of the two poles is

the damped and phase-shifted sinusoid in each term of Equation (2.29). If second

order poles are present, some terms in the time domain series would be of the form

t exp(Ωmtl)[Ām cos(ωmtl)−B̄m sin(ωmtl)], or Āmtl exp(Ωmtl) for poles on the −Ω axis.

The coefficients C̄m, Ām, and B̄m are shown as vectors because they have com-

ponents corresponding to the polarization of the scattered field Ēr(tl). If the radar

receiving the scattered signal has a linearly-polarized antenna, the signal apparent

to the radar will have only a single polarization component. The received signal may

then be treated as a scalar Er(tl). The coefficients Am and Bm of the signal will

then be real scalars, while Cm and C∗
m will, of course, be complex scalars. In the

remainder of this document, the coefficients of each scattering mode are treated as

scalars, with the understanding that they are dependent on polarization, so that a

2-20



target measured vertically and horizontally will have different coefficients on each

scattering mode in the vertical and horizontal cases.

2.2.2 Late Time. Fundamental to SEM is the notion of early, middle, and

late time of the scattering return. Early time is the time required for the incident

pulse to transit the target once from front to back. SEM predicts that during early

time, the series of damped sinusoids will not converge. This makes it difficult to

draw useful conclusions about early-time scattering from SEM, but some work has

been done on defining the entire function shown in Equation (2.13) [15, 17]. Middle

time is the period during which the incident pulse transits back from the far end

of the target to the near end. During middle time, the pole series will converge,

but is not necessarily unique; the entire function will be zero [11, 15]. Late time is

after the return transit. In late time, the incident wave is no longer present, so the

only scattering is due to the unforced, natural response of the target. During late

time, the series converges and is unique. Convergence allows us to approximate the

late-time scattering with a finite sum of terms [17, 18]. A key result of SEM is that

the natural frequency of each term in the pole series is independent of target aspect,

although coefficients Am and Bm in Equation (2.29) are not [9].

The incident wave travels along the surface of a perfect electrical conductor,

or through a dielectric volume. In Figure 2.5, the incident wave travels along the

ray path, which is a combination of creeping waves along the scatterer’s surface, and

diffracted waves from one peak to another on the surface. If the notional minimum

circumscribing sphere in Figure 2.5 is 5 meters in radius, the total path around the

target is on the order of 25 meters from front to back to front. About half of that is

early time, the rest middle time. The first transit lasts approximately 12.5/c = 41.7

nanoseconds. The middle time is from about 41.7 to 83.4 nanoseconds, and late time

is more than 83.4 nanoseconds from the instant energy first arrived at the point on

the target nearest the transmitter. At the receiver, late time is 83.4 nanoseconds
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after the first energy reaches the receiver. For the different times to be distinct, the

incident pulse must be short, ideally an impulse.

For physically realizable late-time signals, the damping time constant is neg-

ative, indicating a pole in the left half of the Laplace domain. This pole placement

corresponds to a signal which loses energy over time in the absence of excitation.

Clearly, the principle of conservation of energy prevents an unforced signal from

gaining energy and growing in magnitude. In addition, it prevents such a signal

from continuing indefinitely as energy is radiated. The pole search may be con-

strained further by noting that the poles in the lower half plane are conjugates, with

frequency s∗n and residue C∗
n, of poles in the upper half plane. Also, poles with a

high-magnitude real component of frequency (low damping time constant) vanish

too quickly to be adequately detected and identified. Therefore, only poles existing

in a limited region of one quadrant of the complex plane are of concern. Even within

this area, poles will be most strongly excited if the imaginary part of the natural

frequency, jω, is found in the incident signal. Summarizing, the excited poles will

be within the area bounded by Ω ∈ [Ωmin, 0) and ω ∈ [0, ωmax], and most will be

in the smaller area bounded by Ω ∈ [Ωmin, 0) and ω ∈ [ωmin, ωmax]. Here ωmin and

ωmax are determined by the incident signal bandwidth, and Ωmin is determined by

the sampling rate and computational considerations.

Practical discussions of radar cross-section [59] cover several scattering compo-

nents attributable to definable physical sources. These components include specular

reflections, edge and tip diffraction, etc. On the other hand, analytical descriptions

of scattering [72, 129] based on Green’s functions do not distinguish between these

sources. They only show the total scattering. Late-time scattering as described by

SEM also gives only the total response in its time window. It does not distinguish

between various types of ringing, although it is known as a practical matter that

the various mechanisms active on a target in late time can include travelling waves,

creeping waves, multiple diffractions, and cavity responses [59]. These same mecha-
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nisms operate during early time as well, but may be dominated by other phenomena

such as specular reflections.

2.3 Signal Processing

Given a set of late-time data from a target, the target’s natural frequencies

must be determined. Among the types of techniques that may be employed are

linear predictors, maximum likelihood methods, and evolutionary algorithms. Linear

predictor is a term encompassing Prony’s Method [3], the Matrix Pencil Method [49],

ESPRIT [115], and others, which use matrix manipulations to work backward from

a data set to the signal that gave rise to it, and from there to the components

that make up the signal [121]. Linear predictors could more appropriately be called

linear estimators, since they estimate current, rather than future, values of variables.

Maximum likelihood methods adjust parameters until errors are minimized, using

search techniques such as gradient search. Maximum likelihood techniques iterate

from a starting point supplied by some other analysis, possibly a linear predictor.

They require far more computation than the linear predictors.

2.3.1 The Matrix Pencil Method. The Matrix Pencil Method (MPM) is

an extension of Prony’s method [3,98] which can take in data on a given target and

analyze it to extract the natural frequencies [49, 119]. A matrix pencil is a linear

combination of two matrices, as in X1 − λX0, in which λ is a scalar variable [51].

The term ‘pencil’ in MPM comes from projective geometry, in which a pencil is a

set of lines which intersect at a point [28]. The term was used by Jain [53] and later

by Jain, Sarkar, and Weiner [54] to group related functions.

An explanation of the theory behind MPM starts with the signal model. The

signal is a sum of a finite number N of exponentials sampled at evenly spaced

intervals, such as:
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x(ti) =
N

∑

n=1

Cn exp(snti) (2.30)

where both Cn and sn are, in general, complex numbers. The resulting signal x(ti)

is real, so for every term Cn exp(snti) there is a corresponding term Cp exp(spti),

p 6= n, for which Cn = C∗
p and sn = s∗p. The Laplace-domain frequencies sn can be

transformed into z-domain frequencies using the sample period ∆t = ti − ti−1 and

the relations:

zn = exp(sn∆t) (2.31)

and:

zi
n = exp(sni∆t) = exp(snti), t0 = 0 (2.32)

where zn is complex if and only if sn is complex, so the signal may be defined as:

x(ti) =
∑

n

Cnz
i
n (2.33)

Given a set of noise-free sampled data x(ti), i = 0, 1, . . . , K − 1, the data is

formed into a data matrix called a Hankel matrix [121]. A Hankel matrix has the

same value in each element along each anti-diagonal, as shown in Equations (2.34)

and (2.35). Given matrix elements yr,c at rows r and columns c, an anti-diagonal is

a set of elements for which r + c is a constant. The shape of the Hankel matrices

is determined by the free-moving window length L [49], also known as the pencil

parameter. For best estimation results, L is chosen between K/3 and 2K/3 [120].

The matrices have (K − L) rows and L columns. Let
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X0 =























x(t0) x(t1) x(t2) · · · x(tL)

x(t1) x(t2) x(t3) · · · x(tL+1)

x(t2) x(t3) x(t4) · · · x(tL+2)
...

...
...

. . .
...

x(tK−L−1) x(tK−L) x(tK−L+1) · · · x(tK−2)























(2.34)

X1 =























x(t1) x(t2) x(t3) · · · x(tL+1)

x(t2) x(t3) x(t4) · · · x(tL+2)

x(t3) x(t4) x(t5) · · · x(tL+3)
...

...
...

. . .
...

x(tK−L) x(tK−L+1) x(tK−L+2) · · · x(tK−1)























(2.35)

Each element in the matrix X1 is from data sampled one period later than the data

in the corresponding element of X0. It is therefore the result of the multiplication

of each term in Equation (2.33) by its corresponding zn. As an aside, most authors

implement MPM with a Hankel matrix, but the technique can also be implemented

with a Toeplitz matrix [49]. A matrix with Toeplitz symmetry has the same values

across each diagonal, rather than each anti-diagonal. Only Hankel data matrices are

used herein, to conform with the majority of the literature.

The data matrix X0 can be decomposed into three matrices, as:

X0 = Z1CZ2 (2.36)

Z1 =























1 1 · · · 1

z1 z2 · · · zN

z2
1 z2

2 · · · z2
N

...
...

. . .
...

zN−L−1
1 zN−L−1

2 · · · zN−L−1
N























(2.37)
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Z2 =

















1 z1 z2
1 · · · zL−1

1

1 z2 z2
2 · · · zL−1

2

...
...

...
. . .

...

1 zN z2
4 · · · zL−1

N

















(2.38)

and

C =

















C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · CN

















(2.39)

where Z1 and Z2 are Vandermonde matrices [45]. The values Cn found on the main

diagonal of C are the amplitude coefficients of the signal model in Equation (2.33).

In a similar fashion, X1 can be decomposed as:

X1 = Z1CZ0Z2 (2.40)

where Z1, Z2 and C are as defined in Equations (2.37), (2.38), and (2.39), respec-

tively, and

Z0 =

















z1 0 · · · 0

0 z2 · · · 0
...

...
. . .

...

0 0 · · · zN

















(2.41)

Using Equations (2.36) and (2.40), the matrix pencil X1−λX0 can be rewritten

as:

X1 − λX0 = Z1CZ0Z2 − λZ1CZ2

= Z1C[Z0 − λI]Z2

(2.42)
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The rank of the matrix pencil is N , provided N ≤ L ≤ (K − N), for an arbitrary

value of λ [120]. However, if λ = zn, a row of [Z0 − λI] goes to zero, and the rank of

the matrix pencil is reduced by one. The frequencies zn may therefore be found by

converting the matrix pencil X1 − λX0 into a generalized eigenvalue problem as:

X
†
0X1 = λI (2.43)

The matrix X
†
0 is the Moore-Penrose pseudo-inverse of X0 [38], defined via the

singular value decomposition (SVD) [38,121]. The SVD is

U0Σ0V
T∗
0 = X0 (2.44)

where Σ0 and X0 have L columns and (K − L) rows. U0 and V0 are both square

matrices. U0 has (K − L) rows and columns, while V0 has L rows and columns.

As an example, consider

Σ0 =









































σ1 0 0 · · · 0

0 σ2 0 · · · 0

0 0 σ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · σL

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0









































(2.45)

where σ1 ≥ σ2 ≥ . . . ≥ σL.

The matrices U0 and V0 contain the left and right singular vectors of X0. The

pseudo-inverse of X0 is computed from the decomposed matrices as

X
†
0 = V0Σ

−1
0 UT∗

0 (2.46)
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Here it must be noted that Σ−1
0 is not a true inverse, except in the case of a

square matrix X0. It is defined, using the scalar inverses of the nonzero elements of

Σ−1
0 , as

Σ−1
0 =























σ−1
1 0 0 · · · 0 0 · · · 0

0 σ−1
2 0 · · · 0 0 · · · 0

0 0 σ−1
3 · · · 0 0 · · · 0

...
...

...
. . .

... 0 · · · 0

0 0 0 · · · σ−1
L 0 · · · 0























(2.47)

Thus, in the noise-free case, the z-domain frequencies zn can be found and the

Laplace-domain frequencies sn calculated from them.

Instead of perfectly-known data x(ti), where i = 1, . . . , K, available data

y(ti), i = 1, . . . , K, will in fact be corrupted with noise. The noisy data is ar-

ranged into Hankel data matrices Y0 and Y1 as was done for uncorrupted data in

Equations (2.34) and (2.35). If the presence of additive noise is assumed in each

element of the matrices Y0 and Y1, the noise contributions W0 and W1 can be sep-

arated, in theory, from the uncorrupted matrices X0 and X1, and the matrix pencil

can be rewritten as

Y1 − λY0 = (X1 + W1) − λ(X0 + W0)

= (X1 − λX0) + (W1 − λW0)

(2.48)

If λ is a generalized eigenvalue of the matrix pencil X1 − λX0, in other words,

if λn = zn, n = 1, . . . , N , the rank of the matrix pencil is reduced by one. However,

because of the presence of noise matrices W0 and W1 in Equation (2.48), only noisy

estimates ẑn of these generalized eigenvalues are available.

Once the eigenvalue estimates ẑn are known, the natural frequency estimates

may be found via the natural logarithm. Although not pointed out explicitly in the

literature [48–51, 54, 119, 120], this must be a complex natural logarithm [64, 125],
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y = Ln(x). Here, it is defined with a complex range with real components <(y) =

ln |x| in (−∞,∞) and imaginary values =(y) = arg x in (−π, π]. The domain of the

complex natural logarithm used here is a single Riemann sheet with a branch cut

along the −<(x) axis. The natural frequencies are estimated via

ŝn = Ln(ẑn)/(∆t) (2.49)

To reduce noise, one data matrix is filtered prior to estimating eigenvalues.

The truncated pseudo-inverse of the Hankel matrix Y0 [48] is found by modifying the

SVD computation in Equation (2.46). The truncated pseudo-inverse is the pseudo-

inverse of the low-rank approximation [121] described below. The data matrix is

assumed to be of rank N , given the N terms summed in the underlying signal

model. The largest N singular values, called the dominant or principal singular

values [47], are assumed to represent the underlying signal x(ti) and are retained.

The singular vectors associated with those singular values are assumed to span the

signal subspace of the matrix [121]. The remaining L − N singular values of the

matrix are associated with noise, rather than signal, thus are set to zero. The L−N

singular vectors associated with the non-principal singular values span a subspace

orthogonal to the signal subspace, which is assumed to be the noise subspace of the

data matrix Y0 [121]. The low-rank approximation to the pseudo-inverse of Y0, also

called the truncated pseudo-inverse, is given by:

Y
†
0T = V0Σ

−1
0T UT∗

0 (2.50)

where Σ−1
0T is the reduced-rank version of Σ−1

0 from Equation (2.47), in which σ−1
N+1

through σ−1
L have been replaced with zeros. To employ the truncated pseudo-inverse

effectively, some means must be found to determine how many singular values to

retain. MPM in its original form provides no solution to this problem, but the Total

Least-Squares Matrix Pencil Method does, as discussed in the next section.
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2.3.2 The Total Least-Squares Matrix Pencil Method. An improvement to

the Matrix Pencil Method is the Total Least-Squares (TLS) Matrix Pencil Method

[47, 120]. In the basic version of MPM, one data matrix, Y0, is perturbed by SVD

truncation. In TLS-MPM, both matrices, Y0 and Y1, are perturbed. To illustrate,

let error matrices E0 and E1 be the differences [Y0 − Y0R] and [Y1 − Y1R]. The

ranks of Y0R and Y1R are both equal to N and the Frobenius norms [121] of the

perturbation matrices ||E0||F , ||E1||F are minima [47], as guaranteed by the SVD

[121]. The Frobenius norm of the error matrix E0 is [121]:

||E0||F = trace{ET∗
0 E0} = trace{[Y0 − Y0R]T∗[Y0 − Y0R]} (2.51)

The data matrices Y0 and Y1 are not calculated directly. A single Hankel data

matrix Y is computed from all data points. Its approximate matrix is found via

SVD truncation. The right singular matrix V contains N principal and L−N non-

principal right singular vectors of Y. The principal vectors form a new truncated

matrix VT , of L rows and N columns. The vectors making up the columns of VT

are orthogonal to the remaining, non-principal vectors of V. The first L− 1 rows of

VT form V0T , while the last L − 1 rows form V1T .

The z-domain frequencies zn are then estimated from eigenvalues λ of the

matrix pencil

V1T − λV0T (2.52)

Because V0T and V1T are orthogonal to the assumed noise subspace, TLS-MPM

gains additional noise resistance over MPM.

As with the standard MPM, the estimated natural resonance frequencies ŝn

are found from the eigenvalue estimates ẑn via the same complex natural logarithm

defined previously as Ln(z). Ln(ẑn) is divided by the sample period ∆t to find ŝn

as in Equation (2.49).
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An additional benefit of TLS-MPM is a criterion to estimate the desired num-

ber of poles N based on knowledge of the accuracy of the data. While the basic MPM

uses an arbitrarily assumed number of exponential terms, TLS-MPM determines a

number of terms based on the size of the singular values of the Hankel matrix and

the known or assumed level of noise in the data. Given data that is accurate to P

digits, the singular values associated with the signal are found via

σn ≥ σ1 × 10−P (2.53)

Singular values less than the criterion σ1 × 10−P are assumed to represent noise and

are set to zero. The distance between a rank-[N+1] matrix and its rank-N truncation

is given by the singular value σN+1. If σN+1 is less than the noise assumed to be

present in the signal, the noise is sufficient to account for the difference between the

rank-N truncated matrix and the rank-[N+1] matrix. Therefore, the singular value

σN+1 represents noise rather than signal [97].

The significance level P is described as the number of noise-free digits, but

in fact, need not be an integer. To represent noise variations in increments of less

than 20 dB, fractional values of P are required. These values can be interpreted as

narrow bounds of uncertainty on the final digit in the data. If the last digit of data

is given as 4 but the true value is known to be between 3 and 5, it can be viewed as

a fraction of a noise-free digit, because an amount of usable information is present

that is less than that of a noise-free digit.

2.3.3 Modified Matrix Pencil Methods. A separate improvement to MPM is

the addition of the low-rank Hankel approximation (LRHA) of Li, Liu, and Razavilar

[66]. The LRHA is a pre-filtering technique applied to a data matrix before employing

a linear predictor algorithm. Li, et al [66], proposed its use with the Kumaresan-

Tufts (KT) algorithm [61] to create the Modified KT algorithm. This technique,

under the name reduced-rank Hankel approximation (RRHA), was employed with
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MPM by Lu, Wei, Evans, and Bovik [69]. Three variants were developed. The one

discussed here was denoted Modified Matrix Pencil Method 3 (MMP3). The term

LRHA will be used rather than RRHA from here onward for consistency with Li,

et al [66]. LRHA has not been employed in conjunction with TLS-MPM, only with

the basic MPM.

The LRHA is an iterative technique that alternates between reducing the rank

of a matrix via SVD truncation and returning the matrix to Hankel symmetry by

averaging across the elements of each anti-diagonal. Let X0 be the noise-free data

matrix, with Hankel symmetry, used in MPM. Let Y0 be a noise-corrupted version

of X0. Let Y0T be an approximate version of Y0, filtered by SVD truncation as

explained in Equation (2.50). A different approximation of Y0, denoted Y0H , is

found by averaging the values across each anti-diagonal of Y0T . Li, et al, [66] show

that, compared to Y0T , Y0H is a superior approximation to X0 in that

||Y0H − X0||F ≤ ||Y0T − X0||F (2.54)

where || · ||F indicates the Frobenius norm [121]. The proof given by Li, et al, is

that, for the elements in any anti-diagonal n, that is, elements at row i and column

j satisfying i + j = n, the errors between the noise-free data elements x(n) and the

approximate data elements yT (i, j) and yH(n), are related by

1
N

∑

i+j=n, i≥0, j≤n |x(n) − yH(i, j)|2 = |x(n) − yH(n)|2

+ 1
N

∑

i+j=n, i≥0, j≤n |yH(n) − yT (i, j)|2

≥ |x(n) − yH(n)|2
(2.55)

where there are N elements in anti-diagonal n of matrix X0, Y0T , or Y0H .
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Applying Equation (2.55) to every anti-diagonal in each matrix, it can be seen

that

||Y0H − X0||2F ≤ ||Y0T − Y0H ||2F + ||Y0H − X0||2F = ||Y0T − X0||2F (2.56)

Thus the error in the reduced-rank Hankel approximate matrix is less than the error

in the low-rank approximate matrix.

2.4 Stochastic Estimation

Here a variety of techniques are discussed which are fundamental to the target

recognition algorithm. Each target in the library will be represented by a model

in a Kalman filter. The basic theory of such filters is presented in Section 2.4.1

and the application of the filters to the target recognition problem is detailed in

Section 4.2. Several filters will be combined in a multiple-model adaptive estimation

(MMAE) [76] algorithm. MMAE is presented in Section 2.4.2 and developed into a

target recognition algorithm in Section 4.3.

In stochastic control and estimation theory [76,77], a frequently-seen problem

is estimating the current values of the state variables of a given dynamic system.

Often, the goal is to use the state variable estimates to control a system. In this

case, however, there is no system to control. The state estimation process is simply

used to gather information about a signal. An estimate of the states is formed from

noise-corrupted measurement data and some knowledge of the system’s dynamics.

The stochastic estimation techniques discussed in this research are based on

noise of an assumed form. Noise in this case is assumed to be additive, white,

Gaussian, and zero-mean. The additive assumption is simply that the noise adds or

subtracts a random amount from the underlying signal. The white assumption is that

the noise has infinite bandwidth. Realistically, noise cannot have infinite bandwidth

because that implies infinite power involved in the noise process, which is impossible.
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However, the noise can have nearly constant power per unit frequency (i.e., power

spectral density value) over the entire bandwidth of the system, so that there is no

distinguishable difference between realistic wideband noise and the idealized white

noise. The assumption of a Gaussian probability distribution for the noise is justified

by the Central Limit Theorem [44], which states that as more and more random

variables are added together, the distribution of their sum becomes more nearly

Gaussian, regardless of the probability distributions of the individual variables. The

zero-mean assumption is that at any point in time, the sum of all possible values the

noise could attain at that point, weighted by the probability of the noise achieving

those values, is zero. In other words, the expected value of the noise at any point in

time is zero, simply because the noise is equally likely to be above or below zero.

It is also assumed that the noise is an ergodic process, meaning a random

process which has a time average that is statistically equivalent to the average over

all possible realizations of the random variable corresponding to the random process

at any one particular time. Since the noise is zero-mean, a time average over a

sufficient length of time should tend toward zero.

2.4.1 The Kalman Filter. Given any system which is linear in its state

variables, operates according to a known differential equation, and is subject to

additive, white, Gaussian noise, the best estimate of the true states of the system

is provided by a Kalman filter [65, 77]. Kalman filters are widely used in control

applications in which measurements may be corrupted by noise, such as aircraft

flight control [65, 78, 80] and navigation [94]. Nishiyama [96] applied a Kalman

filter to a frequency estimation problem, but his signal model was different from

the one presented here. The late-time scattered signal is a real one consisting of

damped sinusoid terms, while Nishiyama assumed a complex signal with undamped

sinusoids.
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The Kalman filter generates an estimate of the states based on a probability-

weighted average between the measurements and the expected behavior of the sys-

tem. Weights are determined from the expected covariance of both measurements

and states. In a discrete-time Kalman filter, every sample period, the most recently

updated value of each state is propagated using the system dynamics equation and

known control inputs. As measurements are taken, the updated states are deter-

mined using the measurements and the state values immediately prior to the mea-

surements. Covariances are calculated for both sets of state estimates based on

expected noise in the dynamic process and the measurement equipment.

The linear system model state and output equations for a continuous-time

system with sampled data are [77,106]

dx̄(t)

dt
= F(t)x̄(t) + B(t)ū(t) + G(t)w̄(t) (2.57)

ȳ(ti) = H(ti)x̄(ti) + D(ti)ū(ti) + v̄(ti) (2.58)

where F, B, H, D, and G are matrices which in general are time-varying (although

time-invariant matrices are used in the models for this research) and may be complex

in a particular system. They represent system dynamics (F), control inputs (B),

measurements or outputs (H), direct coupling between inputs and outputs (D), and

noise inputs to the process (G). The vectors x̄, ȳ and ū are the state, measurement

and control input vectors, respectively. The vectors w̄ and v̄ represent dynamics

driving noise and measurement noise, respectively. These two noise sources are

assumed independent of each other and Gaussian. The dynamics driving noise is

assumed zero-mean, and has strength Q. The measurement noise is also assumed

zero-mean, and has covariance R. Note that a state-space model is not unique. A

given set of differential equations can be expressed in many different state space

forms, giving us a great deal of flexibility. For a discrete-time (or sampled data)
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system, F is not used directly. Instead, it is used to calculate the state transition

matrix Φ(ti, ti−1).

The linear system model in equivalent discrete-time form is [77]

x̄(ti+1) = Φ(ti+1, ti)x̄(ti) + Bd(ti)ū(ti) + Gd(ti)w̄d(ti) (2.59)

ȳ(ti) = H(ti)x̄(ti) + D(ti)ū(ti) + v̄(ti) (2.60)

where the discrete-time dynamics driving noise w̄d has covariance Qd(ti), defined

below in Equation (2.65). The state transition matrix Φ is a solution of

dΦ(t, t0)
dt

= F(t)Φ(t, t0)

Φ(t0, t0) = I

(2.61)

in which I is a p × p identity matrix. If F is time-invariant, the equation can be

solved in the Laplace domain, producing the resolvent matrix

ΦL(s) = [sI − F]−1 (2.62)

The answer can be transformed back into the time domain, yielding

Φ(t − t0) = L−1{[sI − F]−1}|(t−t0) (2.63)

where L−1 indicates the inverse Laplace transform. [77,106]

The filter state estimate ˆ̄x(ti) and state covariance P(ti) are computed recur-

sively from initial values ˆ̄x(t0) = x̄0 and P(t0) = P0. From filter start, and after

each measurement update, the filter propagates ˆ̄x(ti−1) and P(ti−1) forward in time.

The filter computes a predicted value for the state, ˆ̄x(t−i ), and covariance P(t−i ) for

a time t−i immediately prior to the next measurement update at ti. The Kalman

filter propagation equations corresponding to the discrete-time system are [77]
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ˆ̄x(t−i ) = Φ(ti, ti−1)ˆ̄x(t+i−1) +
∫ ti

ti−1

Φ(ti, τ)B(τ)ū(τ)dτ

= Φ(ti, ti−1)ˆ̄x(t+i−1) + Bd(ti−1)ū(ti−1)

(2.64)

and

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T (ti, ti−1) +

∫ ti
ti−1

Φ(ti, τ)G(τ)Q(τ)GT (τ)ΦT (ti, τ)dτ

= Φ(ti, ti−1)P(t+i−1)Φ
T (ti, ti−1) + Gd(ti−1)Qd(ti−1)G

T
d (ti−1)

(2.65)

The control input ū is assumed to be held constant during a sample period. That

allows Bd(ti−1) to be defined as

Bd(ti−1) =

∫ ti

ti−1

Φ(ti, τ)B(τ)dτ (2.66)

The discrete-time system noise covariance is defined by

Gd(ti−1)Qd(ti−1)G
T
d (ti−1) =

∫ ti

ti−1

Φ(ti, τ)G(τ)Q(τ)GT (τ)ΦT (ti, τ)dτ (2.67)

in which there is some flexibility in the choice of both Gd and G. If the Qd matrices

have as many rows as the state vector, and are square, it is possible to choose Gd = I.

For this choice of Gd, the discrete-time dynamics noise covariance can be found via

Qd(ti−1) =

∫ ti

ti−1

Φ(ti, τ)G(τ)Q(τ)GT (τ)ΦT (ti, τ)dτ (2.68)

For every sample time ti, a new measurement vector ȳ(ti) is fed into the filter.

The filter then computes a residual r̄(ti) with filter-computed covariance A(ti). The

Kalman gain K(ti) is computed and used to update both the state vector estimate

ˆ̄x(t+i ) and its covariance P(t+i ) to their values at a time t+i immediately after the

update at time ti. The Kalman filter update equations for the system are [77]:

2-37



r̄(ti) = ȳ(ti) − H(ti)ˆ̄x(t−i ) (2.69)

A(ti) = H(ti)P(t−i )HT (ti) + R(ti) (2.70)

K(ti) = P(t−i )HT (ti)[A(ti)]
−1 (2.71)

ˆ̄x(t+i ) = ˆ̄x(t−i ) + K(ti)r̄(ti) (2.72)

P(t+i ) = P(t−i ) − K(ti)H(ti)P(t−i ) (2.73)

To improve numerical stability, Equation (2.73) can be replaced by the Joseph form

[77]:

P(t+i ) = [I − K(ti)H(ti)]P(t−i )[I − K(ti)H(ti)]
T + K(ti)R(ti)K(ti)

T (2.74)

This form is equivalent, but avoids matrix subtraction, preserving both the positive

definiteness and symmetry of the state covariance P(t+i ). A different algorithm

known as the U-D factored form provides numerical precision and stability superior

to the Joseph form, but the Joseph form was easier to implement in the software

package used in this research. The U-D factored form can be implemented in future

research.

2.4.2 Multiple Model Adaptive Estimation. If the exact system dynam-

ics are unknown, but can take any one of several known forms, the form which

best describes the system can be found using Multiple Model Adaptive Estima-

tion (MMAE) [71, 76]. MMAE algorithms have been applied to flight control sys-

tems which conduct failure detection and identification [89], target tracking algo-
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rithms [31], control of spacecraft structures [39], and detection of jamming in navi-

gation systems [140].

One widely used application of stochastic estimation and control techniques in-

volves failure detection and identification (FDI) in a control system. FDI algorithms

must first detect the occurrence of a failure, then attempt to diagnose it to allow

corrective action. In target recognition, it can be assumed that a new target has

been detected, leaving us with a problem parallel to the failure mode identification

portion of FDI. As soon as data comes in, something must be identified, here a tar-

get signature rather than a failure mode. It is useful to review FDI techniques here.

In addition to MMAE, there are the Chi-Square (χ2) test [44] and the generalized

likelihood ratio test (GLRT) [136]. The Chi-Square test is effective for detection, but

weak in parameter identification. In typical implementations of GLRT [135,142,143],

a single Kalman filter provides a residuals vector to a bank of matched filters. Each

filter contains a model of the system affected by an anticipated error, and looks for

the presence of an offset in the residuals which indicates the failure has occurred.

In addition, a known GLRT limitation [135] is that windowing the estimate of the

error onset time θ leads to a reduction in the accuracy of the estimate of the size of

the failure, and may cause a delay in identifying failures. If a time window is not

used, the set of hypotheses to be examined by a GLRT method will grow, leading

to an unrealizable algorithm [135].

In MMAE, several Kalman filters run simultaneously using the same measured

data. Each filter runs with a different system model representing the system as

it may operate, or variations of the same model with different parameter values.

Each filter (denoted with a subscript k) develops its own state estimate ˆ̄xk(ti) and

compares it to the measurement vector ȳ(ti), generating a residual r̄k(ti) = ȳ(ti) −
Hk(ti)ˆ̄xk(t

−
i ). Note that this form of the residual is sometimes called the “innovation”

[56, 57]. Authors using the innovation term will define the residual as r̄k(ti) =
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ȳ(ti) − Hk(ti)ˆ̄xk(t
+
i ) [77]. In the rest of this document the term residual will be

applied to the quantity calculated immediately prior to measurement update.

The scaled residuals can then be calculated from the Cholesky square root

of the inverse of the Ak(ti) matrix, C

√

A−1
k

T

r̄k, to normalize each residual to its

anticipated magnitude. Computationally, the scaled residuals are not explicitly cal-

culated, but rather the quadratic form r̄T
k A−1

k r̄k (= r̄T
k

C

√

A−1
k

C

√

A−1
k

T

r̄k) is computed

within MMAE. The matrix Ak(ti) = Hk(ti)Pk(t
−
i )HT

k (ti) + Rk(ti) is the covariance

computed by each filter for its own residuals.

The MMAE method involves monitoring the scaled residuals from each model

and calculating the probability that any one model is the right one. This is called

the hypothesis conditional probability (HCP) pk(ti) because it is conditioned on

the history of actual measurement values [76]. The component filter producing the

smallest scaled residuals is the one which best represents the true system dynamics.

MMAE systems can provide a weighted sum of the state estimates of each filter, in

which the weights are the computed probabilities that each of the filters is correct.

An alternative is to use the state estimate produced by the filter with the highest

HCP. Using the single best estimate of the state instead of the weighted average

results in the maximum a posteriori (MAP) form of the MMAE system.

The standard, Bayesian blended MMAE, and the MAP version of MMAE,

are based upon very similar equations, but are very different conceptually. Both

implement a bank of Kalman filters, and both compute an HCP for each filter based

on its residual vector and residual covariance matrix. The difference is what is done

with the information. The standard MMAE develops a single, blended state estimate

based on a probability-weighted average of the states estimated by each filter. It is

therefore a conditional mean estimator. The MMAE-MAP algorithm, in contrast,

is a conditional mode estimator. Instead of forming a blended estimate from every

filter’s state vector, it uses only the state estimate from that filter which has the

highest HCP at that time. The term conditional in the case of the two estimators
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and the hypothesis conditional probability, refers to the fact that the probability

assigned to each filter is conditioned on the history of all measurements seen until

that point.

The hypothesis conditional probability is determined by the iteration

pk(ti) =
fȳ(ti)|ā,Ȳ (ti−1)(ȳi | āk, Ȳi−1)pk(ti−1)

K
∑

j=1

fȳ(ti)|ā,Ȳ (ti−1)(ȳi | āj, Ȳi−1)pj(ti−1)

(2.75)

where the conditional probability density function is calculated from [136]

fȳ(ti)|ā,Ȳ (ti−1)(ȳi | āk, Ȳi−1) = βk exp{−1

2
r̄T
k (ti)A

−1
k (ti)r̄k(ti)} (2.76)

where

βk =
1

(2π)m/2|Ak(ti)|1/2
(2.77)

and m is the number of elements in the measurement vector. The residual covariance

matrix Ak is generated in the kth Kalman filter as:

Ak(ti) = Hk(ti)Pk(t
−
i )HT

k (ti) + Rk(ti) (2.78)

Because the HCPs are calculated recursively, they must be initialized at a certain

value. For this application, prior to employing the algorithm, the models in each of

the filters are assumed equally likely to describe the system correctly. Therefore, for

a bank of K filters, the probability of each filter is initialized to 1/K.

Note that each filter’s HCP is weighted by the HCP computed for that filter

from the previous sample, as shown in Equation (2.75). In effect, probability flows

from each filter that poorly matches the measurement to each filter that matches

the measurement well. A problem in this formulation is that a filter’s HCP may

reach zero and be unable to regenerate. In control and estimation problems, the

physical problem may change over time, so that a filter which was not needed early
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on may become important later. If its probability falls to zero however, it cannot

contribute to the overall MMAE system after that point. One solution is to bound

the probability to some small finite value, such as 0.01 or less, to allow probability

to flow back to any filter. To keep the mathematical definition of probability intact,

an upper bound could be imposed on the HCP of each filter which is the sum of the

lower bounds on all other filters. Another simple solution is to sum the bounded

probabilities and divide each by the sum, in effect rescaling them to ensure they

sum to one. The probabilities set to the lower bound would end up only slightly

lower than the arbitrary lower bound, which is no problem at all. An alternative

to lower bounds is to implement a transition probability model using the model

that the random process resulting in the probability vector for all time, composed

of components pk(ti) for k = 1, 2, . . . , K, is a Markov process, that is, the present

value of the probability vector depends only on the previous single value and not on

the entire time history [76].

The weighted average state estimate is

ˆ̄xM(t+i ) =
K

∑

k=1

ˆ̄xk(t
+
i )pk(ti) (2.79)

which has covariance

PM(t+i ) =
K

∑

k=1

pk(ti)
{

Pk(t
+
i ) + [ˆ̄xk(t

+
i ) − ˆ̄xM(t+i )][ˆ̄xk(t

+
i ) − ˆ̄xM(t+i )]T

}

(2.80)

where ˆ̄xk is the state estimate produced by the kth filter given the assumption that

parameter vector āk is correct. In a control system which employs MMAE, the

weighted average estimate ˆ̄xM is critically important. It is the answer MMAE is

designed to find. In the target recognition scheme, however, neither ˆ̄xM nor its

conditional covariance PM are needed. The key in this research is the HCP pk

associated with each filter k. Equations (2.75) and (2.76) will cause the probability

pk associated with the best-matching filter to rise, and all others to drop. After
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Figure 2.6 MMAE Diagram

several iterations, it is desired that the correct probability will approach one, so a

target identification answer can be reported along with the associated probability

that the choice is correct.

Figure 2.6 depicts a schematic diagram for an MMAE system. The system in

question is the more typical Bayesian blended version of MMAE. A diagram of an

MAP version of MMAE would have all the features seen in Figure 2.6 except those

inside the dotted box.

2.5 Previous Target Recognition Techniques and the E-Pulse

In addition to resonance annihilation techniques, Mooney, Ding and Riggs

[90,91] implemented a generalized likelihood ratio test for target identification using

late-time transients. The technique has some theoretical similarity to the Multiple

Model Adaptive Estimation approach, as shown by Hanlon [41]. The implementa-

tion of Mooney, et al did not use Kalman filters. Instead, it involved a likelihood
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function that incorporated the signal data over the entire time window, as well as

all unknown parameters. Other methods which have been used to distinguish cones

from cylinders are an autoregressive filter with exogenous input (ARX), optimal in-

strumental variables (IV) and autoregressive moving average with exogenous input

(ARMAX) [24,25].

Given a library of natural frequency signatures, the state of the art in recogniz-

ing a target involves resonance annihilation via pulse convolution [92, 118]. Several

authors have done work on resonance annihilation techniques called the kill pulse

(K-pulse) [58], extinction pulse (E-pulse), [18] single-mode pulse (S-pulse) [52], ξ-

pulse [14], and resonance annihilation filter [117]. The idea is to determine a pulse

which will eliminate the modes associated with a known set of natural frequencies

when convolved with a signal. Several pulses can be convolved with copies of the

input signal in a parallel scheme to produce several resultant signals.

Rothwell developed the E-Pulse [112] as a generalized K-Pulse [58], and used it

both to recognize targets and also to estimate the natural frequencies of a target [112].

Rothwell also developed the single-mode pulse as an E-pulse variant [112]. The

various resonance annihilation techniques, such as E-pulse, K-Pulse, ξ-Pulse, and S-

Pulse, were developed to identify a target based on known resonances [14,18,52,58,

92, 118]. Other researchers working with resonance annihilation techniques include

Ruiz, Gallego, and Carrion [36, 117, 118], Ilavarasan, Ross, Rothwell and Chen [52],

and Mooney, Ding and Riggs [92].

The E-pulse is described here since it is compared to the MMAE-MAP method

in Chapter IV. E-pulses exist in two forms, forced and natural, both of which are

weighted series of subsectional basis functions. The basis functions β(t) can be

Dirac delta functions, rectangular pulses, trapezoids, polynomials defined on short

intervals, etc. Subsectional (finite-duration) basis functions are used because the

E-pulse must have a finite duration. The forced E-pulse designed to eliminate the

effects of N poles will have N+1 basis functions, where the first function is considered
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the forcing function for the resonance which is eliminated by the remaining pulses.

The natural E-pulse consists of N basis functions, which are considered to eliminate

their own resonances [112].

An E-pulse e(t) is made up of forcing ef (t) and extinction ee(t) components:

e(t) = ef (t) + ee(t) = ef (t) +
M

∑

m=1

αmβm(t) (2.81)

The extinction component is the sum of basis functions weighted by coefficients αm.

The forcing function may be any finite-duration function, and is commonly chosen

to be a weighted basis function for simplicity. In the case of the natural E-pulse, the

forcing component ef (t) is set to zero. The E-pulse is convolved with the late-time

portion of the measured signal.

To show the theory behind the E-pulse, a signal uncorrupted by noise is con-

sidered, although in practice, all signals are corrupted by noise to some extent. In

the noise-free case, a portion of the resulting signal c(t) = e(t) ¯ y(t) will have zero

amplitude. The symbol ¯ indicates convolution. To illustrate the concept, consider

an E-pulse ee
i (t) composed of a single basis function βi(t). When convolved with a

signal, it is intended to eliminate the effect of a single pole si.

ee
i (t) = δ(t) − exp(siT )δ(t − T ) (2.82)

In the Laplace domain, the pulse is

eeL
i (s) = 1 − exp[(si − s)T ] (2.83)

so that at the frequency of interest,

eeL
i (si) = 1 − exp(0) = 0 (2.84)

When an expression ee
i (t) ¯ y(t) involving convolution is transformed into the

Laplace domain, it becomes a multiplication expression eeL
i (s)yL(s). The act of
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convolving ee
i (t) with a signal y(t) in the time domain has an effect analogous to

multiplying eeL
i (s) by yL(s) in the frequency domain: the si frequency component is

annihilated.

To annihilate many frequencies, the signal y(t) may be convolved successively

with the E-pulse ee
i (t) of each of them. Alternatively, in the Laplace domain, the

signal yL(s) may be multiplied by the E-pulse eeL
i (s) of each frequency. An equivalent

technique is to produce a single E-pulse composed of several weighted basis functions,

each of which eliminates the contribution of a single pole term. The weights αm

applied to each basis function βm can be found via a matrix equation. For an E-

Pulse developed in the Laplace domain [113], the equation is:
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(2.85)

Equation (2.85) can be expressed more simply as:

BLᾱ = −ēfL(s̄) (2.86)

where BL is the matrix of basis functions βL.

The effectiveness of the pulse is very sensitive to the basis length T = p∆t,

p = 1, 2, . . .. For continuous data, T could be any time, but given sampled data, an

integer multiple of the sample period is the easiest to implement. Here, T is any

positive integer p times the sample period ∆t. The matrix BL becomes singular when

T = pπ/ωn. Singularity is a useful characteristic for the natural E-pulse, but must

be avoided for the forced E-pulse. In the case of the natural E-pulse, Equation (2.85)

becomes

BLᾱ = 0̄ (2.87)
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For this equation to have a nonzero solution, the matrix BL must be singular, i.e.,

must have two rows that are linearly dependent on each other. A way to guarantee

linear dependence is to set the pulse length to be such that T = pπ/ωn. The length

must be chosen so that only those two rows are dependent.

Given a library of K targets, each with its own E-pulse, a decision must be

made about which target best matches the signal. Several E-pulses ek(t), k =

1, 2, . . . , K can be convolved with the measured signal y(t) to produce several con-

volved signals ck(t), k = 1, 2, . . . , K. The convolved signal indicating the best target

match is the one with the lowest energy discrimination number (EDN) [18,92]:

EDN =

[∫ TL+W

TL

c2(t)dt

] [∫ Te

0

[ef (t)]2dt

]−1

(2.88)

The EDN is found for each resultant signal c. Te is the duration of the E-pulse, and

TL is the beginning of the late-time period plus Te. W is the window width, chosen

to be the same for all convolutions. The convolved signal with the lowest EDN is

selected as the best match, indicating which target signature best fits the data [118].

2.6 Chapter Summary

In this chapter, background information has been provided on the electromag-

netic theory which pointed the way to the new target recognition algorithm. The

theory behind the pole estimation algorithm used to build the signature library has

been presented. In addition, the procedures necessary to implement the Kalman

filter and the multiple model adaptive estimation algorithm have been shown. In

the next chapter, a novel variant of the Matrix Pencil Method, the Modified Total

Least-Squares Matrix Pencil Method, is developed and applied to the problem of

SEM pole estimation for late-time scattered signals.
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III. Building the Library: Signal Processing Research

3.1 Overview of Target Signature Development

The target recognition scheme developed in this research involves comparing

the target signature to a known library of signatures. To implement it, the library

must first be filled. The signatures in the library are simply sets of resonant frequen-

cies associated with each target. It is therefore necessary to estimate an adequate

set of natural frequency estimates via late-time data from a target. An adequate

set is a number of estimated poles sufficient to reconstruct late time signals from

any azimuth. The targets used in this research are simple geometric shapes such as

cylinders and blocks, or combinations thereof. Libraries contain signatures for four

to ten targets, in the form of Kalman filters, as explained in Chapter IV.

In this chapter, variants of the MPM are applied to the problem of estimating

poles from data. A novel algorithm, called the Modified Total-Least-Squares Matrix

Pencil Method (M-TLS-MPM) [49, 51, 120], is developed and evaluated. M-TLS-

MPM combines elements of both the Total Least-Squares Matrix Pencil Method

(TLS-MPM) and the Modified Matrix Pencil Method 3 (MMP3) [69]. These three

algorithms are applied to the problem of estimating poles from a noisy, complex

signal in Section 3.2.1 and the results are compared.

M-TLS-MPM is used to estimate the poles of measured and computed time-

domain, late-time scattering data. The algorithm is able to estimate poles from

data with 9 dB of signal-to-noise ratio (SNR) and still achieve results close to the

Cramer-Rao bound. The definition of SNR is presented in Section 3.3.1.

From SEM theory, it is expected that the late-time scattered signal contains

poles that are aspect-independent. That is, under ideal conditions, the same natural

resonance frequencies should be found in target measurements taken from different

directions. However, while a pole pair may be present, the coefficients associated

with the poles may be so small in magnitude that the pole pair’s effect is insignificant.
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Since there is no guarantee that any pole or pole pair will be significant, there is no

guarantee that it will be detected in a given measurement. In this research, a subset

of the poles was found to be significant over a wide range of azimuths, allowing the

development of signatures that represent a target across a span of azimuths.

The techniques applied here estimate the poles from the available data. That

is very different from theoretically developing the poles, or from analyzing the

impedance matrix of a computational electromagnetics code [68, 137]. Estimating

poles via any variant of MPM [49, 119], or its alternatives, provides a model of the

scattered signal as presented, with all the noise and other distortions present in a re-

alistic signal. The distortions, such as Gibbs phenomenon [62], pedestal interaction,

etc., can give rise to apparent poles which are not truly in the underlying signal.

Only a small number of scattering modes will be excited sufficiently that their poles

can be estimated at all. The remaining poles are present in theory, but in practice

are lost in noise. Given measured scattering data, the only course of action is to

estimate poles from that data. The best available pole estimator is sought. The

estimators implemented here use data from a single measurement or computation,

at a single aspect angle. There are then several pole sets for a given target. These

pole sets are combined into a single signature which is intended to represent the

target from a variety of angles.

The overall architecture of the target recognition system involves building a

library offline (prior to system operation), and reading it online (immediately after

signal reception). Therefore, computational efficiency in the library building phase

is of much less importance than accuracy of estimation. It is acceptable for a given

technique to take hours to generate a best answer for a given target, as long as the

resulting answer can be read in a fraction of a second. Thus, it is of no concern that

the iterative M-TLS-MPM algorithm may take a few minutes per data set, as long

as it provides the best available estimate of the poles.
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3.2 The Modified Total Least-Squares Matrix Pencil Method

In this section a new variant of MPM is proposed. Elements of the Modi-

fied Matrix Pencil Method 3 (MMP3) and the Total Least-Squares Matrix Pencil

Method (TLS-MPM) are combined into a new algorithm named the Modified Total

Least-Squares Matrix Pencil Method (M-TLS-MPM). In addition, the performance

of the new algorithm is compared to that of both TLS-MPM and MMP3. Both M-

TLS-MPM and MMP3 make use of an iterative Low-Rank Hankel Approximation

(LRHA). The number of iterations of the LRHA required, relative to noise strength,

is investigated.

MMP3 uses most, but not all, of the features of the TLS-MPM. It is in fact a

total least-squares technique because both matrices (Y0,Y1) are perturbed by SVD

truncation prior to forming the matrix pencil (Y†
0TY1T ), as in TLS-MPM [47, 51].

This aspect of MMP3 was not noted by its developers [69, 109]. There are two

TLS-MPM techniques not employed in MMP3. First, partitions V0T and V1T of

the truncated, right-singular matrix VT are used in the matrix pencil, as shown in

Equation (2.52), instead of data matrices Y0T and Y1T . Second, the significance

criterion P from Equation (2.53) is used to determine the number of poles.

Here is a summary of the M-TLS-MPM algorithm. First the data is formed

into a single Hankel matrix. Then SVD truncation and Hankel approximation are

performed in an iterative fashion. Four iterations are recommended, as explained in

Section 3.3.2. The matrix pencil is formed from partitions of right singular matrix

of the Hankel matrix. The eigenvalues of the matrix pencil (V†
0TV1T ) are found and

converted to natural frequencies. Frequencies that are not physically realizable or

otherwise invalid are eliminated.

3.2.1 Evaluation of M-TLS-MPM with Kumaresan-Tufts Data. The al-

gorithm was tested with the damped-exponential data used by Kumaresan and

Tufts [61] in 1982 to test their linear predictor technique. The same data set has been
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used by other authors [66, 69] to compare their techniques to the Kumaresan-Tufts

Method. Since the data is complex, it does not represent a scattered time-domain

radar signal. It was used only to make a consistent comparison between the new

M-TLS-MPM algorithm and two existing variants of MPM. This complex data set

is designated ‘Kumaresan-Tufts Data’ or ‘KT data’ in this document. KT data is

determined by:

y(ti) =
2

∑

n=1

Cn exp[(Ωn + ωn)ti] + r(ti) (3.1)

where each term in the series is a single, unpaired complex pole, rather than a pole

pair or real-axis pole. There are two poles, with damping rates Ω1 = −0.2 and

Ω2 = −0.1, and oscillating rates ω1 = 2π(0.42) and ω2 = 2π(0.52). The sample time

∆t = ti+1 − ti is one second. The coefficients are set to C1 = 1 and C2 = 1. The

noise r(ti) is Gaussian and complex. The duration of the data set is 25 seconds.

With the sample time given, the data is under-sampled, so MPM and its vari-

ants are unable to estimate the frequencies accurately. The signal is under-sampled

because the sampling rate of one sample per second was less than the Nyquist

rate [62], which in this case is ω2/π, or 1.04 samples per second. The z-Domain

frequencies may be estimated with no difficulty from the eigenvalues of the matrix

pencil, but mapping them to Laplace-domain frequencies exposes the problem that

ω2∆t > π. Thus, the estimate for the pole at −0.1 + j2π(0.52) will occur around

−0.1 − j2π(0.48) in the s plane. One solution to this problem lies in redefining the

complex natural logarithm (CNL) so that the higher frequency may be captured.

The CNL, y = Ln(x), was defined in Section 2.3.1. It is suitable for conjugate

pairs of frequencies for which |ω|∆t < π. This is the CNL definition which is most

appropriate for any real data, such as measured or simulated time domain radar

data.

The alternative CNL, suited for KT data, is denoted y = Ln′(x) in this doc-

ument. Its complex range has a real component <(y) = ln |x| in (−∞,∞) and an
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imaginary component =(y) = arg x in [0, 2π). The domain of the complex natural

logarithm y = Ln′(x) is a single Riemann sheet [64] with a branch cut along the

+<(x) axis. Because KT data consists of two poles in the upper half-plane, this def-

inition of the CNL can capture both of them. Lower-half-plane poles ω < 0 cannot

be estimated using this definition.

The other solution to the undersampled data was to resample it at a higher

rate. The KT data in its original, undersampled form was used to allow a direct

comparison to the results already seen in the literature. In addition, Equation (3.1)

was used to generate a new data set, over a duration of 25 seconds with a sample

rate of 0.5 seconds. The new data is denoted ’resampled KT data’ in this document.

The analysis in this section was done for both the original and the resampled KT

data.

The performance of M-TLS-MPM was compared to both MMP3 and TLS-

MPM using the original KT data. Each technique was evaluated by comparing the

mean squared error (MSE) of the parameter estimates to the Cramer-Rao bound

(CRB) [44,61] for those parameters. The performance of the three algorithms is dis-

played in terms of mean squared error versus noise power, both reported in decibels.

The noise power (in dB referenced to a watt) is thus

Snoise = 10 log(2σ2) (3.2)

where σ2 is the noise variance. Since the noise is complex, the variance applies

to both the real and imaginary components, and the total noise power is twice the

variance. This is the same formula given by Kumaresan and Tufts [61] as a definition

for the SNR. It is only a proper definition of SNR if the mean signal power is equal

to one, which is not true for KT data. The mean signal power for signal y(ti), where

i = 1, . . . , I, is

S =
1

I

I−1
∑

i=0

y(ti)y
∗(ti) (3.3)
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The mean signal power of the KT data is 0.4321 watts rather than 1 watt. The SNR

can be found by subtracting the noise power (in dB) from -3.6442 dB.

To assess the error in parameter estimation, 500 noise-corrupted signals were

formed at each desired noise power by summing KT data with complex Gaussian

noise. The desired noise powers were -25 dB to -1 dB, every 2 dB. The estimated

poles were associated with the actual poles according to their imaginary components.

The algorithm was set to look for two poles, so the analysis could focus on the error

in estimation of the damping and oscillating rates of those two poles. Estimated

poles for which ω̂ ≤ 2π(0.47) were associated with s1 = −0.2 + j2π(.42), while poles

for which ω̂ > 2π(0.47) were associated with s2 = −0.1 + j2π(.52). The MSE was

computed as

MSE(α) =
1

K

K
∑

k=1

(α̂k − α)2 (3.4)

where α is one of these parameters: Ω1, Ω2, ω1, ω2. The average was based on K

estimated poles that were associated with each actual pole. Ideally, K = 500, but

for low SNR cases, sometimes there were fewer than 500 estimated poles associated

with an actual pole.

At higher noise powers, it was possible that the error on an ω estimate was

large enough that the estimate was associated with the wrong pole. Such spurious

associations may have increased the MSE of a parameter estimate.

Figures 3.1 through 3.4 show the mean-square error found for both M-TLS-

MPM and MMP3, each with one iteration of LRHA, and TLS-MPM. The CRB used

by Kumaresan and Tufts [61] is also shown.

The MSE of M-TLS-MPM was lower than that of MMP3 for estimates of ω,

particularly in the range of -9 to -11 dB noise power, corresponding to 5.4 to 7.4

dB SNR. For estimation of Ω, both MMP3 and TLS-MPM beat M-TLS-MPM when
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Figure 3.1 Cramer-Rao bound for Ω̂1 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM
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Figure 3.2 Cramer-Rao bound for Ω̂2 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM
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Figure 3.3 Cramer-Rao bound for ω̂1 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM
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Figure 3.4 Cramer-Rao bound for ω̂2 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM
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noise power was less than -15 dB, corresponding to a SNR of 11.4 dB. The advantage

was approximately 1 dB of reduction in the MSE of Ω̂.

Oddly, the MSE of MMP3 and TLS-MPM estimates of Ω1 and Ω2 also beat

the CRB by approximately 1 dB at these noise levels. To have an MSE smaller

than the CRB is simply impossible. However, this result is consistent with the

literature on MMP3 [66, 69, 109] and Kumaresan-Tufts [61] for damping parameter

estimates. The result was consistent over many noise power levels, each of which

involved 500 realizations of a noisy signal. It is likely that an error existed in the

original derivation of the CRB [61], but recomputing the CRB is beyond the scope

of this research.

For estimation of ω, the M-TLS-MPM result was approximately equal to the

MMP3 and TLS-MPM results for noise power less than -15 dB (11.4 dB SNR) and

significantly better below that. The MSE of the parameter estimates ω̂1 and ω̂2

was always greater than the CRB. The same MSE formulation was used for all

parameters.

The CRB is a lower limit on variance, assuming the estimate of the parameter

is unbiased, so that the expected value of the estimate is the true value of the

parameter. For MSE to be equal to variance, the mean of the set of estimates must

be equal to the true parameter, making the mean of the estimation error equal to

zero. If the mean of the estimation error is not zero, the MSE will be larger than

the variance by the square of the mean of the error.

Bias was observed in some estimates produced by all variants of MPM, which

is why the MSE of the estimates was used instead of the variance. Typical bias

ranged from ±0.001 for all parameters at -25 dB noise power to ±0.05 for Ω1 and

Ω2, and ±0.5 for ω1 and ω2 at -1 dB noise power. The bias decreased slightly, as

the number of iterations of LRHA increased, but that benefit became less significant

because the variance was the larger part of the error. The bias of M-TLS-MPM was
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only slightly larger than that of MMP3, on the order of 0.001 % at 5 dB SNR, and

less than that of TLS-MPM for one or more iterations of LRHA.

Figures 3.5 through 3.8 show the effect of the first few iterations of LRHA on

the mean-square error. Reduction in the MSE of the parameter estimate improves

little after the second iteration of LRHA, but some benefit can be seen until four

iterations for the Ω estimates at the higher noise powers. There is little or no benefit

to increasing the iterations of the LRHA past four. The benefit of M-TLS-MPM

depends on the parameter being estimated, so the conclusions reached here can be

taken as indicators of performance trends rather than specifications to be achieved

under all circumstances.

The analysis done with KT data was repeated with resampled KT data to verify

the conclusions drawn with the original, undersampled KT data. Equation (3.1) was

used with the same values for the damping rates, oscillating rates, and coefficients.

The resampled KT data consisted of samples taken every 0.5 seconds, twice the

original rate. The samples were taken over the same time span, so resampled KT

data consisted of twice as many time samples as KT data. In this case, the CNL

defined in Section 2.3.1, with the branch cut on the −<(z) axis, was used. Since

ω2∆t < π, the data was no longer undersampled, so the alternate CNL, Ln′(z), was

no longer needed. That allowed the algorithm to find poles with negative oscillating

rates, although both poles in the resampled (and original) KT data have ω > 0.

For the resampled data, the noise power was computed via Equation (3.2),

the signal power was computed via Equation (3.3), and the MSE was computed via

Equation (3.4). The signal power was 0.3891 watts, slightly smaller than in the

original vewrsion of the data. At each desired noise power level, 500 noise-corrupted

signals were formed. Poles were estimated via TLS-MPM, MMP3, and the new M-

TLS-MPM algorithm. To associate estimates with poles, any estimate for which ω <

2π(0.47) was considered to be an estimate of the first pole, s1 = −0.2+j2π(.42), while

the remaining estimates were associated with the second pole, s2 = −0.1+ j2π(.52).
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Figure 3.5 Cramer-Rao bound for Ω̂1 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA
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Figure 3.6 Cramer-Rao bound for Ω̂2 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA
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Figure 3.7 Cramer-Rao bound for ω̂1 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA
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Figure 3.8 Cramer-Rao bound for ω̂2 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA
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Figures 3.9 through 3.12 show the mean-square error found for both M-TLS-

MPM and MMP3, each with one iteration of LRHA, and TLS-MPM. The CRB

used by Kumaresan and Tufts [61] is also shown. A frequent problem noted in these

figures is that the MSE was less than the CRB at high SNR, which is not possible.

Most likely there was an error in the original CRB derivation. Since the mean signal

power for the resampled KT data was 0.3891 watts, the SNR can be computed by

subtracting the noise power from -4.0991 dB.

Figure3.9 shows the MSE achieved for the estimate of Ω1. The MSE of the

M-TLS-MPM estimate was clearly superior to that of TLS-MPM at noise powers

greater than -13 dB. The improvement seen by M-TLS-MPM was 6 to 10 dB. M-

TLS-MPM also beat MMP3 when noise power was above -5 dB (0.9 dB SNR).

Figure3.10 shows the MSE achieved for the estimate of Ω2. Again, M-TLS-

MPM proved significantly better than TLS-MPM for noise powers above -11 dB. The

improvement in MSE was about 6 to 8 dB. MMP3 produced estimates with smaller

MSE than M-TLS-MPM in the range of -9 to -5 dB noise power, but M-TLS-MPM

and MMP3 produced similar results for higher noise powers.

Figure3.11 shows the MSE achieved for the estimate of ω1. The performances

of M-TLS-MPM and MMP3 were very similar. Both algorithms beat TLS-MPM by

about 2 dB when noise power was above -13 dB (8.9 dB SNR).

Figure3.12 shows the MSE achieved for the estimate of ω2. Again, the per-

formances of M-TLS-MPM and MMP3 were very similar. Both algorithms beat

TLS-MPM by about 2 dB when noise power was above -11 dB (6.9 dB SNR).

Figures 3.13 through 3.16 show the mean-square error found for M-TLS-MPM

with one to five iterations of the LRHA. The CRB used by Kumaresan and Tufts [61]

is also shown. The benefit of M-TLS-MPM over TLS-MPM is due to the iterative

LRHA. Much if the benefit comes from the first iteration, but further iterations

provide some smaller benefit as well. The second iteration helps with damping rate

3-13



−25 −20 −15 −10 −5 0
−45

−40

−35

−30

−25

−20

−15

−10

−5

Noise Power (dB)

M
S

E
 (

dB
) 

of
 E

st
im

at
e 

−
 A

ll 
V

er
si

on
s

CRB
TLS−MPM
MMP3
M−TLS−MPM

Figure 3.9 Cramer-Rao bound for Ω̂1 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM using resampled KT data
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Figure 3.10 Cramer-Rao bound for Ω̂2 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM using resampled KT data
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Figure 3.11 Cramer-Rao bound for ω̂1 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM using resampled KT data
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Figure 3.12 Cramer-Rao bound for ω̂2 and Mean-Square Error from MMP3 and
M-TLS-MPM (1 iteration of LRHA each) and TLS-MPM using resampled KT data
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Figure 3.13 Cramer-Rao bound for Ω̂1 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA using resampled KT data
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Figure 3.14 Cramer-Rao bound for Ω̂2 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA using resampled KT data
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Figure 3.15 Cramer-Rao bound for ω̂1 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA using resampled KT data
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Figure 3.16 Cramer-Rao bound for ω̂2 and Mean-Square Error from M-TLS-MPM
with 1 to 5 iterations of LRHA using resampled KT data

3-17



at high noise power, but further iterations achieve little benefit. The fourth and

further iterations appear to provide no significant improvement to the estimates of

the oscillating rates.

Figure3.13 shows the MSE achieved for the estimate of Ω1 by varying the

number of iterations of the LRHA. At noise powers below -9 dB, increased iterations

actually appeared to increase the MSE slightly, on the order of 0.1 dB for each iter-

ation. Above -9 dB noise power, the second iteration provided additional reduction

in MSE, on the order of 3 dB.

Figure3.14 shows the MSE achieved for the estimate of Ω2 by varying the

number of iterations of the LRHA. At noise powers below -11 dB, increased iterations

again appeared to increase the MSE slightly, under 0.1 dB for each iteration. Above

-11 dB noise power, the second iteration provided additional reduction in MSE, on

the order of 2 dB. Some slight reduction in MSE was noted for the third iteration

at noise powers from -7 dB to -3 dB.

Figure3.15 shows the MSE achieved for the estimate of ω1 by varying the

number of iterations of the LRHA. At noise powers below -11 dB, increased iterations

actually appeared to increase the MSE slightly, on the order of 0.1 dB for each

iteration. Above -9 dB noise power, the second iteration provided about 0.2 dB of

additional reduction in MSE.

Figure3.16 shows the MSE achieved for the estimate of ω2 by varying the

number of iterations of the LRHA. At noise powers below -11 dB, increased iterations

actually appeared to increase the MSE slightly, on the order of 0.1 dB for each

iteration. Above -7 dB noise power, the second iteration provided about 1 dB of

additional reduction in MSE. Some additional reduction in MSE, about 0.5 dB, was

noted for the third iteration at noise powers from -7 dB to -3 dB.

To conclude this section, it was shown that the new M-TLS-MPM algorithm

provides parameter estimates with smaller mean squared error than those of TLS-
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MPM at at low SNR, and smaller than MMP3 at some low SNR levels. The benefit is

more pronounced for damping rates than for oscillating rates. M-TLS-MPM should

be used in preference to TLS-MPM, unless processing time is a key criterion or if

the SNR is high. M-TLS-MPM uses slightly less computation than MMP3 for an

equal number of iterations, since M-TLS-MPM uses only a single SVD on the data

matrix Y rather than separate SVD computations for Y0 and Y1. However, the

bulk of the computational load is in the LRHA employed by both algorithms. If the

SNR of the data is unknown, either the M-TLS-MPM or MMP3 algorithm should

be applied. No more than four iterations of the LRHA should be used, and the bulk

of the benefit of LRHA will be achieved after two iterations.

3.2.2 Screening Invalid Poles. A few of the poles output by MPM are

invalid for various reasons. They may be nonphysical due to growing magnitude or

(rarely) being complex poles with their conjugates missing, as explained below. They

may be insignificant due to rapidly decreasing magnitude or association with a very

small coefficient. Successful target recognition requires the best possible rendering of

target poles that are both valid and significant. All invalid poles must be eliminated.

The procedures for eliminating them are discussed below.

Poles with Ω > 0 correspond to growing-magnitude exponentials in the time

domain. It is not physically possible for an unforced stable system’s response to grow

in magnitude. Growth can only result from adding energy to a system, i.e. forcing

the system. Poles with Ω > 0 may be due to noise and an attempt to identify too

many poles. Sarkar [119] discusses this problem and recommends that the poles with

Ω > 0 be eliminated. Such poles were encountered rarely in this research, and were

eliminated.

Some of the insignificant or non-physical pole estimates occurred because of the

SVD truncation used in the matrix pencil method. Some small singular values were

set equal to zero prior to computing the eigenvalues of the matrix pencil. The zeroed
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singular values resulted in many eigenvalues zn that were very small in magnitude

but not exactly equal to zero. These small, insignificant eigenvalues were easily

discriminated from significant eigenvalues by their much larger-magnitude damping

rates, |Ωn|.

Figure 3.17 shows all poles found by TLS-MPM prior to screening out invalid

poles. The poles fell into two widely separated groups based on the size of Ω: a

‘significant’ group on the right side (closer to Ω = 0) and an ‘insignificant’ group on

the left, with much lower (larger magnitude) Ω. Thus the poles on the left side of

the chart, declared invalid, had an Ω about 100 times as large as valid poles. If these

poles represented actual damped sine components of the signal, they would damp

out so quickly that they would contribute essentially nothing to the return.
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Figure 3.17 Pole locations before removing high-damping-rate poles. Line near
top indicates ω = π/∆t

It was possible to separate these poles automatically via a simple criterion. If

the damping rate was such that a damped sine term lost 90% of its magnitude (20
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dB of magnitude) in a single sample period, it vanished too quickly to be significant.

Thus, a damping limit Ωmax was defined as

exp(Ωmax∆t) = 0.1, (3.5)

or, isolating Ωmax, as

Ωmax = ln(0.1)/(∆t). (3.6)

The results in Figure 3.17 are typical of unscreened poles found via TLS-MPM.

The poles fell into two areas based on the size of |Ω|: the possibly significant region

(−300 < Ω < 0 Giganepers/s) and the clearly insignificant region (Ω < −5 × 103

Giganepers/s). The insignificant poles were separated from the potentially significant

poles by a vast empty region in the s plane. They tended to have the |Ω| two orders

of magnitude larger than the potentially significant |Ω| values. The sample period

of this data was ∆t = 6.1043 × 103 Giganepers/s, so given a 90% magnitude-drop

criterion, Ωmax was 377 Giganepers per second. This choice of Ωmax fell within the

empty region in Figure 3.17, closer to the valid poles. Poles with Ω < ln(0.1)/(∆t)

were eliminated.

Another problem was unpaired complex poles. Such poles were expected in the

case of complex KT data, but for real-valued data, valid complex poles must occur in

conjugate pairs. Invalid, unpaired complex poles appeared rarely at the exact upper

limit of frequency resolution given by the Nyquist criterion [62], at ω = π/∆t. These

poles were due to the branch cut in the complex natural logarithm function Ln(z).

All of the eigenvalues that gave rise to these poles were on the negative real axis

of the z-plane. Some unpaired complex poles are shown in the upper left and right

corners of Figure 3.17, indicated by a horizontal line at +π/∆t = 628.3185 GHz.

The data used to generate Figure 3.17 was real-valued. Poles for which ω∆t = π

were eliminated. As a practical matter, most unpaired complex poles also had large-

magnitude damping rates as well.

3-21



3.3 Evaluation of M-TLS-MPM with Synthetic Data

The complex KT data was used in the previous section to test the M-TLS-MPM

algorithm because that data set has been used by several developers [61, 66, 69] of

linear predictor algorithms. However, it is of no further interest in this research.

Since radar data is treated as real in the time domain, the algorithm must be tested

with real data. Also, while KT data consisted of two poles, the late-time signal from

a target frequently had many significant poles. Additional data sets were developed,

which consisted of a greater number of poles either in conjugate pairs or on the real

axis of the s-plane, resulting in real signals. The additional data is referred to herein

as synthetic data. It is explained in greater detail in Section 3.3.1.

For the real data, the definition of the complex natural logarithm (CNL) ŝ =

Ln(ẑ) introduced in Section 2.3.1 was again used. The alternate definition ŝ = Ln′(ẑ)

employed with KT data was not suitable because negative frequencies were present,

and it was not needed because |ωn|∆t < π for all n. To review, the range of the

CNL has a real component <(ŝ) = ln |ẑ| in (−∞,∞) and an imaginary component

=(ŝ) = arg x in (−π, π]. The domain of the complex natural logarithm used in this

section is a single Riemann sheet with a branch cut along the −<(ẑ) axis.

3.3.1 Synthetic Data. Three general sources of data were considered. They

were measured, simulated, and synthetic data. Both measured and simulated data

were collected in the frequency domain as discussed in Appendices B and C. It is

possible to collect either measured or simulated data directly in the time domain,

but the RCS ranges available for research employed swept-frequency measurement.

The computational electromagnetics codes available for use reported results in the

frequency domain. Measured and simulated data were transformed into the time

domain via the IFFT as described in Appendix D. Since only the late-time portion

of the scattered signal can be described by the SEM pole series, it is important that

the matrix pencil method only be applied to late-time data. The beginning of the
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Figure 3.18 Synthetic data Version 1, no noise added, vs range in inches

data set must be after the start of late time, and the end of the data set should be

before the decaying signal is lost in the noise.

The synthetic data did not represent actual targets; it was simply a set of

damped sine series signals. However, it was designed to be closer in form to an

actual radar signal than the KT data used in Section 3.2.1. A plot of an example

synthetic signal is shown in Figure 3.18. It is the weighted sum of three damped

sinusoids (corresponding to pole pairs in the s domain via the Laplace transform),

one non-oscillating exponential (ω1 = 0, A1 = 1, B1 = 0) (corresponding to a real

axis pole), and white noise:

y(ti) = 2W
4

∑

n=1

exp(Ωmti)[Am cos(ωmti) − Bm sin(ωmti)] + r(ti) (3.7)

Equation (3.7) is designed to match the theoretical late-time radar signal shown

in Equation (2.29). The natural frequencies, or poles, are defined by the damping

rate Ωm and the oscillating rate ωm. The coefficients Am and Bm are the residues
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associated with each pole. Discrete samples occur at evenly spaced times ti. A

weighting term W = 0.001 is used to drive the overall magnitude of the synthetic

signal closer to that of the measured radar signals.

Seven poles were used: three pole pairs and a single pole on the real axis. The

poles were similar in the size of the real and imaginary components to the poles

expected for targets of interest within the measured bandwidth. A noise term, r(ti),

was added to investigate noise resistance of the pole estimation and target recognition

algorithms. The noise was additive, white and Gaussian, and was generated by a

pseudorandom number algorithm that allowed the same noise signal to be repeated

exactly, if desired. The noise variance was adjusted to achieve a desired signal to

noise ratio (SNR) in the tests.

SNR was defined as the mean square signal over the time window of interest,

divided by the mean square noise over the same window, expressed in decibels (dB).

For the synthetic data, the time window was the entire 301-sample data set, because

the entire set matched the theoretical form of late-time scattering. However, the

signal strength decayed during that window. An alternate formulation was consid-

ered, which could be called peak SNR, which is the peak power in the time window

divided by the average noise power. It was determined that peak SNR was no more

useful than average SNR, because it only provided information about the early part

of the time window.

There was one assumption used in the synthetic data that may not be present

in actual radar data. The coefficients Am and Bm were chosen within an order of

magnitude of each other to allow unbiased comparisons between their estimates.

An actual target’s scattered signal is due to many significant modes, each with

varied coefficient magnitudes. All synthetic data coefficients had real and imaginary

components with magnitudes between 0.3 and 1. Several variants of synthetic data

were developed with different pole locations and different coefficients. The four

versions were used to test the target recognition algorithm discussed in Chapter IV.
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For each version, poles were estimated via M-TLS-MPM and the estimates used to

develop Kalman filters. The poles used to develop each version of synthetic data are

listed in Table 3.1.

m Version 1 Version 2 Version 3 Version 4
1 −2 −5 −10 −4
2 −3 ± j30 −3 ± j20 −5 ± j50 −1 ± j60
3 −4 ± j60 −4 ± j50 −2 ± j90 −1 ± j90
4 −5 ± j110 −3 ± j100 −1 ± j130 −2 ± j140

Table 3.1 Pole locations for synthetic data, giganepers/sec and gigaradians/sec
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Figure 3.19 Synthetic data poles, Versions 1 (·), 2 (×), 3 (+), and 4 (♦)

The poles for each version of synthetic data are also shown in a plot in Fig-

ure 3.19. The plot has a logarithmic scale along the horizontal (Ω) axis, while the

vertical (ω) axis has a linear scale. That is because Ω is known to have values only

on one side of the origin, while ω can be positive, negative, or zero. It is shown

later that the error in estimation of Ω is greater, relative to the size of Ω, than the

estimation error on ω relative to its size.
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Each version of the data was implemented eight times with different coefficients

for each mode. This was intended to mimic actual late-time radar data, which in

theory has the same poles but different coefficients when measured from different

aspect angles. Each data set was then called an aspect. For example, the Version 1,

Aspect 1 data set was used for much of the analysis below, because the distribution of

its poles in the s plane was similar to that of cylinders. The coefficients were chosen

to separate the phase of each mode into different quadrants of the phase plane. The

coefficients used with each version of synthetic data are shown in Table 3.2.

m Aspect 1 Aspect 2 Aspect 3 Aspect 4
1 0.30, 0 0.40, 0 0.50, 0 0.60, 0
2 1.00,−0.30 0.90,−0.40 0.80,−0.50 0.70,−0.60
3 1.00, 0.30 0.90, 0.40 0.80, 0.50 0.70, 0.60
4 −0.30,−1.00 −0.40,−0.90 −0.50,−0.80 −0.60,−0.70
m Aspect 5 Aspect 6 Aspect 7 Aspect 8
1 0.70, 0 0.80, 0 0.90, 0 1.00, 0
2 0.60,−0.70 0.50,−0.80 0.40,−0.90 0.30,−1.00
3 0.60, 0.70 0.50, 0.80 0.40, 0.90 0.30, 1.00
4 −0.70,−0.60 −0.80,−0.50 −0.90,−0.40 −1.00,−0.30

Table 3.2 Coefficients Am, Bm for synthetic data, millivolts

3.3.2 Evaluating Noise Suppression by the LRHA. The LRHA, used in the

M-TLS-MPM algorithm, acts to suppress noise in the data matrix. After application

of the LRHA, the filtered version of the signal was extracted from the data matrix

and compared to the signal prior to LRHA application.

Noise was added to the Synthetic Data Version 1, Aspect 1. The noise strength

was set so that the SNR ranged from 1 to 25 dB. The algorithm was set to look for

the correct number of poles, seven in this case.

The evaluation criterion was an ensemble average across all samples of the

normalized temporal average of the squared error. For each signal, the error, the

difference between the noisy signal and the uncorrupted signal, was computed at

each sample time. The error of that signal was squared and summed over each sam-
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ple period. The temporal sum of squared error was then normalized by dividing it

by the temporal sum of the square of the uncorrupted signal. This error is desig-

nated the normalized temporal-average squared error (NTSE) in this document. An

ensemble mean was then formed from the NTSE of each of the 100 noisy signals.

The ensemble average is designated the mean normalized temporal-average squared

error (MNTSE). Averaging squared errors first temporally and then in an ensemble

sense is equivalent to averaging first in an ensemble sense and then temporally. The

MNTSE was computed for each signal before the application of the LRHA, and after

one, two, three, or four iterations of the LRHA. For the signal prior to the applica-

tion of the LRHA, the NTSE and MNTSE were equal to the variance of the noise

added to the signal. MNTSE was computed from 1 dB to 25 dB SNR, every 2 dB.

The first iteration of LRHA reduced the MNTSE by approximately 11.7 dB.

This result was consistent across initial SNR levels from 5 dB to 25 dB, as shown

in Figure 3.20. Additional iterations had much less effect on the noise. The second

iteration yielded an additional approximately 0.5 dB reduction in the SNR. After

the second iteration there was a slight increase in the MNTSE. The third iteration

actually increased MNTSE by less than 0.06 dB at SNR levels above 1 dB. The

fourth iteration produced a further increase in MNTSE of about 0.12 dB. The fifth

produced an additional 0.13 dB increase, the sixth an additional 0.11 dB, the seventh

an additional 0.09 dB. A noisy signal prior to application of the LRHA is shown in

Figure 3.21 along with the uncorrupted signal. The signal after one iteration of the

LRHA is shown in Figure 3.22 along with the uncorrupted signal. The signal after

two iterations of the LRHA is shown in Figure 3.23 along with the uncorrupted

signal. As is expected from the small change in NTSE due to the second iteration,

there is no apparent difference between Figures 3.22 and 3.23.

The theory behind the LRHA is that every iteration will improve the parameter

estimates. This was shown to be the case for all parameters at most SNR levels and
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M-TLS-MPM with 0 to 2 iterations of LRHA
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Figure 3.21 Synthetic Data Version 1, y(t) with 13 dB SNR, dashed, and uncor-
rupted signal x(t), solid
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Figure 3.22 Synthetic Data Version 1, yH(t) 13 dB SNR and 1 iteration of LRHA,
dashed, and uncorrupted signal x(t), solid
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Figure 3.23 Synthetic Data Version 1, yH(t) 13 dB SNR and 2 iterations of LRHA,
dashed, and uncorrupted signal x(t), solid
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up to 5 integrations of the LRHA in Section 3.2.1. No theory has been stated that

the mean MSE of the signal itself will decrease at each new iteration of the LRHA.

The signal yH(ti) resulting from the LRHA is the one for which the M-TLS-

MPM computes eigenvalues. It is a different signal than either the noise-corrupted

original signal y(ti) or the underlying, uncorrupted signal x(ti). However, yH(ti) is a

good approximation of x(ti). Across a wide range of SNR values for y(ti), the LRHA

reduced noise by approximately 12 dB in the cases cited.

If the goal of using the LRHA is to suppress noise in a signal, then two iterations

are appropriate for this application. If reducing the error of an estimate is the key

criterion, as it was in this research, then a point of diminishing returns is reached at

about four iterations, as shown in Figures 3.5 through 3.8 in Section 3.2.1. Based

on these findings, four iterations of the LRHA were used in all further applications

of M-TLS-MPM this research.

3.3.3 Evaluating the Significance Criterion P . In this section the effect of

the singular value significance level P on pole estimation is considered. As discussed

in Section 2.3.1, the number of significant poles underlying a measured signal is

unknown. The number can be estimated by counting the singular values of the

data matrix Y that exceed a significance limit σmax × 10−P . An appropriate setting

for P is SNR/20, where the SNR is expressed in decibels, given that P represents

the number of noise-free digits on a signal [120]. To reiterate the discussion in

Section 2.3.2, increasing the number of noise-free digits in a signal by one increases

the SNR by 20 dB. Given that the correct SNR is not known with certainty, some

criterion must be determined from the data which will allow an appropriate setting

for P .

Setting the P level too high allows the algorithm to produce some pole esti-

mates based on eigenvalues that may represent the noise in the Hankel data ma-

trix. That may result in spurious estimates. Setting P too low means that some
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eigenvalues representing the underlying signal may be excluded from consideration,

preventing the algorithm from estimating poles that are significant. It is anticipated

that offsetting P from the prescribed value has less effect when the SNR is higher.

The experiments reported in this section determined how far P can vary from the

SNR-based value while still providing adequate estimation of poles.

The M-TLS-MPM technique was used with four iterations of the LRHA. The

SNR was varied from 1 to 25 dB. The significance factor P was set to 1/20th of SNR

(in dB) plus an offset. SNR was rounded up to the next tenth, so 1.25 was treated as

1.3. The offset ranged from -0.2 to 0.5. There were 100 runs for each offset at each

SNR. In each case, the synthetic data known as Version 1, Aspect 1 was used. The

noise added to each run of the signal was actually a repeatable, pseudo-random data

set. The same 100 noise samples were used at each level of SNR. Results for an offset

of zero and an SNR of 25, 17, 9, and 5 dB are shown in Figures 3.24 through 3.27,

respectively.

The quality of estimation was evaluated by associating estimated poles with

actual poles. The s-plane was divided into zones based on the oscillating rates (ω)

of the actual poles. Zone limits were at ω = ± 15, 45, 85, and 135 Grad/s. The

horizontal lines in Figures 3.24 through 3.27 are the zone limits around each actual

pole. Estimated poles within the zone of an actual pole were associated with it.

Only the upper left quadrant of the s plane is shown. For each pole shown above

the real axis, the lower left quadrant contained a conjugate. The mean error, error

variance, and mean-squared error were computed based on the number of estimated

poles associated with each actual pole.

The M-TLS-MPM algorithm provided good pole estimates from signals as noisy

as 9 dB SNR, as seen in Figure 3.26. Below that, results became unacceptably poor,

as seen in Figure 3.27. Error grew, but in addition some of the actual poles had no

estimate associated with them at all in some trials. All complex poles occurred in

pairs, regardless of SNR, P setting, or number of LRHA iterations, as was expected
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Figure 3.24 Estimated (·) and actual (♦) poles, 25 dB SNR, P = 1.3 (no offset),
using M-TLS-MPM with 4 iterations of LRHA, lines indicate ω zone limits
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Figure 3.25 Estimated (·) and actual (♦) poles, 17 dB SNR, P = 0.9 (no offset),
using M-TLS-MPM with 4 iterations of LRHA, lines indicate ω zone limits
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Figure 3.26 Estimated (·) and actual (♦) poles, 9 dB SNR, P = 0.5 (no offset),
using M-TLS-MPM with 4 iterations of LRHA, lines indicate ω zone limits

−10
2

−10
1

−10
0

−10
−1

−10
−2

0

50

100

150

O
sc

ill
at

in
g 

R
at

e 
ω

 (
G

ig
ar

ad
/s

ec
)

Damping Rate Ω (Giganepers/sec)

Figure 3.27 Estimated (·) and actual (♦) poles, 5 dB SNR, P = 0.3 (no offset),
using M-TLS-MPM with 4 iterations of LRHA, lines indicate ω zone limits
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for a real signal. The only exceptions were poles for which ω∆t = π, which were

screened out, as discussed in Section 3.2.2. Since M-TLS-MPM is intended to be

applied in a laboratory setting, far in advance of actual target recognition, it is

assumed that a SNR of 9 dB or higher can be attained in late time.

For SNR equal to 9 dB or greater and P = SNR/20 (no offset), each measure-

ment had seven estimated poles, with each estimate near an actual pole. Below 9

dB SNR, there was often no estimate for the highest pole. Some bias can be seen in

the pole estimates shown in Figures 3.24 through 3.27. The estimates of Ω tend to

be low (toward a larger |Ω|) for Ω1 at all SNR levels and for each Ω at SNR 17 dB

and below. The estimates of ω2 and ω4 were a bit high at 9 dB. At 5 dB SNR, the

algorithm was ineffective.

With P offset by +0.1 from the prescribed value, that is, P = SNR/20+0.1,

similar results were achieved for the no-offset case. Seven poles were estimated in

each case down to 15 dB SNR, but there were some instances of additional, spurious

estimates below that. Even down to 7 dB SNR, results were recognizable, although

errors grew, particularly on damping rates, as seen in Figure 3.28. Sometimes the

real axis pole was missed at 7 dB. At 5 dB SNR, the results were still somewhat

useful. Error had increased, but there tended to be estimates available for most of

the poles, as seen in Figure 3.29. Below 5 dB, the results were worthless.

For P offset by +0.2, up to four extra poles were estimated in few cases at

25 dB, and more spurious poles were estimated at lower SNR levels. The spurious

pole estimates varied in position from measurement to measurement. Figure 3.30

shows the poles estimated at 5 dB SNR with P offset by +0.2. Also, some spurious

estimates were introduced at SNR of 19 dB and below. However, there were few of

these close to the actual poles, and as with the 25 dB SNR case, they did not occur

in the same position from one measurement to another. Above 9 dB, the computed

mean-square error increased because of the spurious poles in the same zone as each

actual pole. For 5 dB SNR, there were better estimates of the actual poles with P
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Figure 3.28 Estimated (·) and actual (♦) poles, 7 dB SNR, P = 0.5 (offset +0.1),
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Figure 3.29 Estimated (·) and actual (♦) poles, 5 dB SNR, P = 0.4 (offset +0.1),
using M-TLS-MPM with 4 iterations of LRHA, lines indicate ω zone limits
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Figure 3.30 Estimated (·) and actual (♦) poles, 5 dB SNR, P = 0.5 (offset +0.2),
using M-TLS-MPM with 4 iterations of LRHA, lines indicate ω zone limits

offset by +0.2, shown in Figure 3.30 than there were with no offset, as shown in

Figure 3.27. Given the low SNR, it is possible that some of the singular values larger

than σ1 × 10−P were due to noise, rather than signal in the no-offset case. As the

LRHA algorithm was iterated, the low-rank data matrix was regenerated using an

incomplete set of singular values representing poles, as well as some singular values

due to noise. The data matrix would then have been reconstructed poorly. With a

higher P setting, more singular values were used to reform the data matrix, giving

a greater chance that all singular values based on true poles were included. As the

LRHA algorithm was iterated, noise was suppressed and some more singular values

dropped out of the computation, but most or all of the true (signal-based, rather

than noise-based) singular values remained.

With P offset by +0.3, more spurious estimates were introduced at SNR of 25

dB and below. The poles estimated at 25 dB SNR with P offset by +0.3 are shown in

Figure 3.31. Given the number reported at 25 dB SNR, it may be inferred that some
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Figure 3.31 Estimated (·) and actual (♦) poles, 25 dB SNR, P = 1.6 (offset +0.3),
using M-TLS-MPM with 4 iterations of LRHA, lines indicate ω zone limits

spurious poles were reported above that SNR level as well. Spurious poles tended

to have much smaller damping rates |Ω| than the actual poles. As before, they did

not occur in the same position from one measurement to another. The computed

mean-square error increased at many SNR levels, compared to the no-offset case,

because of the spurious poles in the same zone as each actual pole.

Figures 3.32 through 3.37 show the mean-squared error (MSE) of the pole

estimates. Each actual pole was associated with only those estimated poles that fell

within its zone, based on ω. The MSE was normalized by dividing it by the actual

parameter value squared. The result was reported in decibels.

Figures 3.32 and 3.33 show the MSE found with P set to the prescribed value

of SNR/20. The error on the damping rates Ωm was much greater, relative to the

parameter values, than the error on the oscillating rates ωm at every level of SNR.

The worst error was found on the real axis pole Ω1. To put the MSE numbers in

perspective, a relative error of -26 dB equates to an error of 5% of the parameter
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Figure 3.32 MSE (dB) of Ω̂, normalized by Ω2, vs SNR, found via M-TLS-MPM
with 4 iterations of LRHA and P =SNR/20 (no offset)
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Figure 3.33 MSE (dB) of ω̂, normalized by ω2, vs SNR, found via M-TLS-MPM
with 4 iterations of LRHA and P =SNR/20 (no offset)
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Figure 3.34 MSE (dB) of Ω̂, normalized by Ω2, vs SNR, found via M-TLS-MPM
with 4 iterations of LRHA and P =SNR/20+0.2
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Figure 3.35 MSE (dB) of ω̂, normalized by ω2, vs SNR, found via M-TLS-MPM
with 4 iterations of LRHA and P =SNR/20+0.2
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Figure 3.36 MSE (dB) of Ω̂, normalized by Ω2, vs SNR, found via M-TLS-MPM
with 4 iterations of LRHA and P =SNR/20-0.2
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Figure 3.37 MSE (dB) of ω̂, normalized by ω2, vs SNR, found via M-TLS-MPM
with 4 iterations of LRHA and P =SNR/20-0.2
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value. It can then be seen that the error on Ω1 is likely to be greater than 5% when

the SNR is less than 21 dB. The other damping parameters are likely to have greater

than 5% relative error only when the SNR is under 18 dB. The curves in Figure 3.33

show that the ω estimates are likely to have less than 5% relative error whenever the

SNR is greater than 1 dB, but the curves should not be trusted fully for SNR levels

below 5 dB because the MSE is shown to decrease for some parameters below that

point.

For an SNR of 9 dB and higher, the MSE plots in Figures 3.32 and 3.33

were straight lines. This pattern was seen previously in the case of KT data in

Section 3.2.1, when the MSE was close to the Cramer-Rao bound (CRB). Since the

straight-line MSE behavior was observed for both KT and synthetic data, it may be

the case that the MSE for synthetic data in the straight-line region was also close

to the CRB, although there is not sufficient evidence to draw that conclusion. The

CRB was not computed for synthetic data, so the MSE performance relative to the

CRB was not verified in this case. At low SNR, the MSE decreased in some cases

(Ω2, Ω3, ω3) because some actual poles did not have estimates associated with them.

Those estimates that were present at higher SNR but missed below 9 dB would have

been ones that had larger errors.

Figures 3.34 and 3.35 show the MSE found with P offset from the prescribed

value of SNR/20 by +0.2. In this case, it was anticipated that additional, spurious

pole estimates would be reported. Given the simple pole-association technique (by

zones based on ω), the spurious poles were associated with the actual poles even if

good estimates were also reported, resulting in larger MSE whenever spurious poles

were present. The actual poles in the signal were still estimated with small error,

and were consistent from measurement to measurement.

The elevated MSE values seen in Figures 3.34 and 3.35 were more indicative

of a problem in data association than in pole estimation. As discussed above, pole

estimates were associated with actual poles if their imaginary components ω̂ fell
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within broad limits around each actual ω. A more elaborate data association algo-

rithm might decide that some of the poles within the limits around a pole were not

related to that pole. Such unassociated poles would not be included in the MSE

computation. For the purposes of the P evaluation, however, it was sufficient to use

the simple data-association algorithm of sorting poles by ω.

Figures 3.36 and 3.37 show the MSE found with P offset from the prescribed

value of SNR/20 by -0.2. In this case, it was anticipated that valid pole estimates

would frequently fail to be reported at low SNR levels. At 11 dB and above, the

MSE was the same as that found in the no-offset case. Below 11 dB, fewer poles were

estimated. Below 9 dB SNR, the fourth pole pair (Ω4 ± jω4) was not estimated at

all. There were no poles at SNR of 1 or 3 dB because P was set equal to zero, so at

most one pole could have been estimated, if it corresponded to the largest singular

value of the Hankel data matrix.

In this section it is shown that the significance criterion P , used to select the

number of poles in M-TLS-MPM, has a substantial effect on the algorithm’s output.

The best performance is when P is set according to the SNR of the data, as in

P=SNR/20. At low SNR levels, a slight deviation (offset) away from the prescribed

value will result in either additional, spurious pole estimates (positive offset) or the

loss of valid estimates (negative offset).

3.3.4 Signal Reconstruction and Error. The discussion of MPM variants

in the previous sections only considered the ability to estimate poles in a damped-

sine signal. Both poles and residues are unknown, so some attention should be

paid to finding the coefficients (residues). The problems are separable, and once

an estimate of the poles is available, it may be used to estimate the coefficients

(residues). Every published variant of MPM estimates the poles first and then the

residues [49, 51, 69, 119]. Each author finds the residues via a least squares solution

using a Vandermonde matrix, shown in Equation (3.9).
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To find the residue estimates ˆ̄C, the Vandermonde matrix [121] associated with

the pole estimates is developed. This matrix reconstructs elements of the underlying

signal based on the estimated poles. For each estimated pole ŝn, the term ẑn = eŝn∆t

is found. Note that ẑn is an estimate of zn which can be viewed in terms of the

z-transform, a frequency domain analysis technique used with digital data [62]. The

factor zn represents the change in the nth term of the pole series (the signal) after

one sample period. To find the effect after two, three, etc. sample periods, zn (if

constant, as it is here) is squared, cubed, etc. To find the effect of one term n of the

SEM pole series over K sample periods, the following vector is formed:

[ẑ0
n ẑ1

n ẑ2
n ẑ3

n · · · ẑK
n ]T (3.8)

To account for the additive effect of each pole term in the series, several vectors

are arranged into a Vandermonde matrix [45]. For N poles and K measurements,

the matrix is

Z =























ẑ0
1 ẑ0

2 ẑ0
3 ẑ0

4 · · · ẑ0
N

ẑ1
1 ẑ1

2 ẑ1
3 ẑ1

4 · · · ẑ1
N

ẑ2
1 ẑ2

2 ẑ2
3 ẑ2

4 · · · ẑ2
N

...
...

...
...

. . .
...

ẑK−1
1 ẑK−1

2 ẑK−1
3 ẑK−1

4 · · · ẑK−1
N























(3.9)

where

ẑn = exp(ŝn∆t) (3.10)

Of course, ẑ0
n = 1 for all ẑn. Estimates of the complex coefficients ˆ̄C can be found

using the least-squares solution [120]

ˆ̄C = (ZT∗Z)−1ZT∗ȳ (3.11)
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For a real signal, all complex coefficients will appear in conjugate pairs. The

solution in Equation (3.11) only applies when a matrix is thin, or overdetermined,

i.e., with more rows than columns [121]. In our problem, more measurements than

poles are needed to use Equation (3.11) to solve for the coefficients. If there were

more poles than measurements, the coefficients could still be estimated. For this

underdetermined matrix a least-norm solution would be used as follows [121]:

ˆ̄C = Z(ZZT∗)−1ȳ (3.12)

As an alternative to the least-squares (LS) solution in Equation (3.11), a

weighted least-squares (WLS) solution can be found using

ˆ̄C = (ZT∗WZ)−1ZT∗Wȳ (3.13)

In the WLS solution a weight matrix W is chosen, which must be nonsingular and

symmetric [121]. If the weights are chosen so that W = I, the WLS solution is

equivalent to an unweighted LS solution.

The WLS criterion was attempted in a few cases in which reconstruction error

was poor. The weight matrices selected were diagonal matrices in which the elements

on the main diagonal increased either linearly, as 1/I, 2/I, . . . , I/I for a signal

with I samples, or as the square of the linearly increasing weight, (1/I)2, (2/I)2,

. . . , (I/I)2. The purpose for these choices of weights was to force more attention

to the later parts of the time window, where signal strength faded. In some cases,

reconstructed signals fit the original signal better early in the time window.

There was no thorough test of WLS effectiveness against unweighted LS effec-

tiveness. In many cases, reconstruction error was determined to be acceptable, so

WLS was unnecessary. In a few cases of poor reconstruction error in which WLS

was attempted, the resulting error was the same as, or greater than, the reconstruc-

tion error found with unweighted LS. Further tests with a variety of weight matrices,
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such as exponentially-tapered diagonal elements, may be a useful direction for future

researchers.

Once poles and coefficients are estimated, it is simple to reconstruct the signal

itself. The Vandermonde matrix is multiplied by the estimated coefficients:

ȳREC = Z ˆ̄C (3.14)

The elements of ȳREC are a reconstructed version of the data samples y(t0),

y(t1), . . . y(tK−1). The more accurately the poles and coefficients are estimated

(and the number of significant poles correctly determined), the more closely the

reconstructed signal will match the original radar signal.

Reconstruction error is an important measure of signature quality, which helps

select an appropriate model complexity, in terms of number of poles. Another mea-

sure of signature quality is how well the pole estimates match up to poles found

via theory or other pole estimation techniques. However, comparison to other data

sources can only be accomplished in the limited set of cases for which such data

is available. Reconstruction error can be computed for late-time signals from any

target, making it the most widely-applicable measure of signal quality.

In the target recognition algorithm, it is advantageous that the signatures

should be as simple (comprising as few poles) as practically possible. Small size

makes the computations in the filter simpler and quicker. However, if the number of

poles used to reconstruct the signal is reduced, reconstruction may suffer.

The reconstruction error of the signal was the NTSE defined in Section 3.3.3,

which was the temporal average of the squared error (in this case, the difference

between the reconstructed and unmodified signals), divided by the mean-square

signal. Normalized error was used because the signal strength varied greatly from one

target to another, or even between two measurements of the same target at different

azimuths. Normalized error allowed the reconstruction of two measurements to be
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compared even if one signal was ten or more times the amplitude of another. The

reconstruction error was computed as:

e =

∑

i

[y(ti) − yR(ti)]
2

∑

i

y2(ti)
=

∑

i

[y(ti) −
∑

n

Cn exp(snti)]
2

∑

i

y2(ti)

=

∑

i

{y(ti) − 2
∑

m

exp(Ωmti)[Am cos(ωmti) − Bm sin(ωmti)]}2

∑

i

y2(ti)

(3.15)

Each radar signal’s reconstruction was evaluated with two criteria, one sub-

jective and the other quantitative. The first was a subjective judgment of a plot of

the original and reconstructed signal together. If they overlaid each other with only

small gaps, the reconstruction was good. It could then be assumed that one of two

things was true. Either a sufficient set of the poles underlying the signal had been

adequately estimated, or sufficient poles had been used that a forced fit had been

achieved, regardless of the quality of individual pole estimates.

The possibility of a forced fit came up in early experiments with the Matrix

Pencil Method. Given several hundred poles, the reconstructed signal could closely

match every noise-induced twist and turn, even in a signal which did not necessarily

fit the decaying exponential signal model. However, that possibility could be dis-

counted because only 10 to 20 poles were estimated with the M-TLS-MPM code,

rather than hundreds.

The second criterion used to assess signal reconstruction was the reconstruction

error shown in Equation (3.15). An example signal is shown in Figure 3.38. This

data was taken from a circular cross-section cylinder, three inches long and one

inch in diameter, with the cylinder’s axis parallel to the z̃ axis and 42 degrees from

broadside incidence. The incident field was φ-polarized. The reconstruction error
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Figure 3.38 Overlay of measured (solid) and reconstructed (dashed) signals, show-
ing gaps: P=1.3, 14 poles used, reconstruction error = 4.8%.

calculated for this data set was 0.0477. The poles were found using the M-TLS-MPM

algorithm discussed in Section 3.2 with P = 1.3 and four iterations of LRHA. The

signal was reconstructed using WLS with linearly increasing weights.

Given the error seen in Figure 3.38, either the poles were not estimated cor-

rectly, enough of the correct ones were not included to capture the signal adequately,

or noise in the signal prevented a match. While the signal does not appear to con-

tain significant white noise, other forms of noise are present including Gibbs phe-

nomenon and narrowband noise in the frequency-domain simulation data. The data

was smoothed in the frequency domain to reduce step discontinuities that cause

Gibbs phenomenon in the time-domain data, but some ringing was still present.

Much better reconstruction was seen in the θ-polarized scattering from the same

cylinder at the same angle. The scattered and reconstructed signals from the θ-

polarized case are shown in Figure 3.39. The reconstruction error for this signal was

0.0020.
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Figure 3.39 Overlay of measured (solid) and reconstructed (dashed) signals, show-
ing gaps: P=1.1, 4 poles used, reconstruction error = 0.2%.

Increasing P slightly and allowing small number of additional poles to be esti-

mated did not necessarily decrease the reconstruction error, and frequently increased

it. If the increase in P allowed a single additional pole to be estimated, a real axis

pole may have been lost and replaced by a pole pair. Even if the same number of

poles was estimated, the pole estimates changed in some cases, resulting in a different

fit between the reconstructed and noisy signal.

In this section it was shown that estimated poles can be used to reconstruct

a signal matching the original signal to within a small amount of error. Subjective

and quantitative criteria were developed. The quantitative criterion, reconstruction

error, is a useful guide to how well the set of estimated poles captures the dynamics

of the received signal. It should be supplemented with a subjective comparison of

how well the reconstructed signal matches the received signal, particularly in cases

where the reconstruction error is near a predetermined limit. Researchers using

M-TLS-MPM should experiment with various P levels to achieve acceptable levels

3-48



of reconstruction error. When some estimate of the SNR of the late-time signal

is available, P should be set in the range SNR/20 ± 0.2. In this research, P was

adjusted so that signal reconstruction error was on the order of 1%.

3.3.5 Application to Theoretical Sphere Data. The goal of all the ex-

perimentation with M-TLS-MPM was to provide a technique that will work with

measured radar data. Such data consists of a theoretically infinite number of poles,

an unknown number of which are significant.

An intermediate step before applying M-TLS-MPM to radar data was to apply

it to theoretical sphere data. The sphere data was processed the same way as the

radar data (as explained in Appendix D), but the late-time signal would be weaker

than that of some other targets. Spheres are known to be weakly resonant relative

to other objects such as wire dipoles [59]. The dominant scattering effect from a

sphere in late time is the creeping wave [59]. Effects that are present in late time for

other targets, such as travelling waves, multiple diffractions, etc., are not present in

sphere scattering [59].

Scattering from a sphere is determined in the frequency domain by the Mie

Series [129]. The Mie Series is described fully for the backscatter case in Section A.1

of Appendix A, and its convergence was examined. Mie Series data was transformed

from the frequency domain into the time domain via the Inverse Fast Fourier Trans-

form, as explained in Appendix D. The same procedure was performed on all radar

data simulated or measured in the frequency domain. Since the pole locations have

been found analytically for the sphere, the M-TLS-MPM results were compared to

the analytic pole results. Unlike the Synthetic Data discussed previously, there is

an infinite number of poles in the backscattered signal from a sphere. Only a few of

these were significant enough to be found by M-TLS-MPM. The sphere’s poles are

discussed further in Section A.2 of Appendix A.
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Mie-Series data was generated from 0.10 to 18.0 GHz every 0.01 GHz, for a

sphere of three-inch radius. The frequency-domain data was tapered with a Hanning

window prior to employment of an IFFT to find the impulse response. The Hanning

window was used to suppress Gibbs phenomenon that would otherwise be caused by

the step discontinuity at the end of the available data. The choice of the Hanning

window over other windows and the window’s effects on M-TLS-MPM results are

both discussed in Section D.3 of Appendix D.

In Figure 3.40, it can be seen that M-TLS-MPM is able to estimate the sphere

poles very well if a very high significance level P (explained in Section 2.3.2) is used.

There was excellent agreement for the poles with the smallest damping rate |Ω|, as

seen by the × symbols that fell inside the circles. The theoretical poles with larger-

magnitude damping rates were not estimated, most likely because their residues were

small, meaning that their scattering modes were weak and their effect on overall

scattering was insignificant. The set of × symbols running in a roughly horizontal

line at around ω = 110 Grad/s were due to Gibbs phenomenon, as explained in

Section D.3 of Appendix D. The upper limit of the frequencies used to generate this

data was 18 GHz, or 113.1 Grad/s. No poles were found at ω frequencies higher

than 113.1 Grad/s. Since no noise was added to this data, there were potentially up

to 15 digits of precision available, so P was set to 15.

Given the small number of spurious poles to the right of the theoretical poles

in Figure 3.40, the significance level of P = 15 was slightly high for the data. For

realistic data, however, it would be extremely high. Setting P = 15 implies a SNR

of approximately 300 dB, far in excess of the SNR likely to be seen in an actual,

late-time radar signal.

Figure 3.41 shows the same data, with P = 6. No noise has been added, but

with the lower significance level, some valid singular values were suppressed prior

to pole estimation. These are seen as circles with no estimate (×) nearby. Some of

the poles that were still significant had poorly-estimated damping rates. These are
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Figure 3.40 Estimated poles (×) from 3-inch radius sphere, Mie Series data, using
M-TLS-MPM, no noise added, P = 15, and theoretical poles (◦)

shown by the estimates (×) to the right of the theoretical poles (◦) in the center of the

figure, with ω between 30 and 65 Grad/s. Many poles are missed or estimated badly.

These poles were associated with weak scattering modes, so they contribute little to

the late-time signature. A good signature for the sphere could be developed with a

subset of the poles that are associated with larger residues. Using all the estimated

poles, the late-time scattered signal was reconstructed. The reconstruction error

was extremely low, 1.08 × 10−12, indicating essentially perfect reconstruction. The

signal was reconstructed again, this time with only the poles that were estimated

well. Reconstruction error with only the well-estimated poles was 5.44 × 10−12, still

indicating very good reconstruction. The poles that were estimated poorly in this

case contributed very little to the scattered signal.

With P set to a value more appropriate for the other data sources, very few

poles were estimated. Figures 3.42 and 3.43 show the results for P = 2 and P = 1,

corresponding to SNR values of 40 and 20 dB, respectively. The vertical scale of
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Figure 3.41 Estimated poles (×) from 3-inch radius sphere, Mie Series data, using
M-TLS-MPM, no noise added, P = 6, and theoretical poles (◦)

the plots has been changed to focus on the area where poles were estimated. Only

theoretical poles with damping rates Ω > −20 GN/s were shown to improve the

figure’s clarity. For the P = 2 case, the reconstruction error was 3.87%. For the

P = 1 case, the reconstruction error was 27.35%. In both cases the reconstructed

signal appeared to be sufficiently different from the theoretical signal that target

recognition performance for a sphere and these pole estimates would likely be poor.

While various techniques have been used in the literature to find the poles of

simple-shape targets, much less attention has been paid to determining which poles

have a significant effect on late-time scattering. In the case of the sphere of three-inch

radius, few poles are significant, given SNR levels from 20 to 40 dB, corresponding

to P = 1 to 2.

It appeared that one reason the higher frequency poles were lost was the way

the data was processed. The Hanning window, applied to the sphere data prior

to the IFFT, reduced the amplitude of the higher-frequency data. The Hanning
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Figure 3.42 Estimated poles (×) from 3-inch radius sphere, Mie Series data, using
M-TLS-MPM, no noise added, P = 2, and theoretical poles (◦)
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Figure 3.43 Estimated poles (×) from 3-inch radius sphere, Mie Series data, using
M-TLS-MPM, no noise added, P = 1, and theoretical poles (◦)
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window is explained in Section D.3 of Appendix D. With higher-frequency data

suppressed, the power in late-time scattering modes at those frequencies would also

have been suppressed to some extent. The singular values in the Hankel data matrix

associated with higher frequencies would have been reduced, and then eliminated if

too much lower than the largest singular value. The same window was applied to all

radar data, suppressing the higher-frequency poles. A Hanning window is commonly

applied to radar data prior to application of the IFFT.

To examine the effect of the Hanning window, the Mie Series data was trans-

formed into the time domain again, this time with no window applied. The poles

found for the unwindowed P = 2 case were similar to the P = 2 case with a Hanning

window, except that two additional poles were estimated that had ω values near

the upper limit of the data. The poles are shown in Figure 3.44 and the late-time

signal is shown in Figure 3.45. The reconstructed signal is also shown in the figure,

but the reconstruction error was so small, 0.0066%, that the difference between the

signals is hard to discern. The high-frequency oscillations that look somewhat like

white noise in the picture are an example of Gibbs phenomenon. The additional

freedom in reconstruction offered by the extra high-ω poles were sufficient to allow

an excellent match.

From this section it can be seen that, although a large number of poles may

be identified for a target, only a few of these will have such a significant effect

on the late-time scattering that they will be estimated accurately by the M-TLS-

MPM. The problem should not be seen as a failure of the M-TLS-MPM in relation

to other MPM variants because its performance was shown to be comparable to

or better than MMP3 and TLS-MPM in Section 3.2.1. The technique was shown

to be capable of estimating poles accurately from synthetic data (damped sinusoid

series) in Section 3.3.3. For certain targets with weak late-time scattering, such

as the sphere, this technique will produce poor pole estimation and poor signal

reconstruction unless the available data is extremely clean. For strong late-time
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Figure 3.44 Estimated poles (×) from 3-inch radius sphere, unwindowed Mie Series
data, using M-TLS-MPM, no noise added, P = 2, and theoretical poles (◦)
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scattering, such as the θ-polarized scattering from a cylinder seen in Section 3.3.4,

the answer provided by M-TLS-MPM is sufficient to reconstruct the signal well.

3.4 Combining Data from Various Azimuths

Previous sections in this chapter discussed estimation of poles from a single

signal measured at one aspect angle (azimuth and elevation). Poles estimated from

a single aspect of a target may be used to identify that target [102, 103], assuming

that all of the relevant poles of the target were significant at the aspect angle consid-

ered. However, the overall goal of this research is an aspect-independent signature

comprising every significant pole at many or all aspect angles. In this section an

algorithm which develops a multiple-aspect signature is discussed.

An algorithm called Pole Association and Averaging (PA&A) was developed to

combine poles from several measurements of a single target, taken at different aspect

angles. PA&A averaged nearby poles, using all poles found from each measurement

of a target.

The key to combining poles from different measurements or simulations at

different aspect angles is data association, the process of determining which bits

of data (pole estimates in this case) correspond to the same underlying reality (an

actual pole). In Section 3.3.3, estimated poles were associated with actual poles of

synthetic data by simply comparing the ω̂ value to some established zones, shown in

Figures 3.24 through 3.27 as horizontal lines. The result was that spurious poles were

included in the MSE computations, increasing error. To produce a single signature

that represented a target from a range of aspect angles, a more careful algorithm

was required, one that took into account differences in Ω as well as ω. Since actual

poles were unknown for these targets, zones could not be established in advance.

Even if theoretical poles were known, no information was available to show which

ones would be most significant.
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Given the results with synthetic data in Section 3.3.3, particularly Figures 3.24

through 3.26, it was anticipated that the pole estimates for a target measured or

simulated from several angles would fall in a small region of the s-plane around the

actual pole location. The pole estimates had ω̂ values both above and below the

true parameter value, and appeared to be unbiased. A mean of several ω̂ estimates

would therefore yield a result close to the actual ω value.

While the ω̂ estimates appeared to be unbiased, the Ω̂ estimates were clearly

biased toward lower values. A mean of the Ω̂ values associated with a particular ac-

tual Ω would be strongly biased downward as well, since the lower (larger-magnitude)

Ω̂ values would dominate the mean. The Ω̂ values are displayed on a logarithmic

scale in this document to account for their wide variation. A mean of log Ω̂ would

be less affected by the downward bias.

For each pole, PA&A determined which, if any, poles from different measure-

ments were near it. Nearness was determined by arbitrary tolerance limits (a ‘box’)

in Ω and ω. Since the tolerance limits on Ω were different from the limits on ω, the

box was rectangular rather than square. For each pole found within the box, a new

box was drawn and all poles within it were combined into a single group. The num-

ber of poles in a group was used to determine whether the group likely represented a

true pole or a collection of spurious poles that fell nearly together. The mean value

of each group of poles was treated as a single, aspect-invariant pole.

Care was taken to avoid adding two poles from the same measurement into the

same group, because nearby poles from the same measurement represented different

scattering effects. Groups were split into two or more separate groups to avoid

averaging poles from the same measurement.

The quality of the multiple-azimuth pole set was evaluated by using the new

poles to reconstruct all the measured signals. The signals were reconstructed as

explained in Section 3.3.4.
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Polarization presented a dilemma. Each target was measured or simulated from

two orthogonal polarizations, identified as θ or φ and explained in Appendices B

and C. The scattered signal from a target could be very different in amplitude

and shape depending on the polarization viewed. A clear example was the cylinder

scattering shown in Figures 3.38 and 3.39. The θ-polarized scattering in Figure 3.39

appeared to be dominated by a single damped sine, while the φ-polarized scattering

in Figure 3.38 was more complicated. While the same poles are theoretically present

regardless of polarization, the coefficients are definitely polarization-dependent [6].

The result is that modes considered significant at one polarization may be completely

insignificant at the orthogonal polarization, particularly in the case of cylinders.

A pole-estimation algorithm such as M-TLS-MPM would be unable to estimate

the poles associated with insignificant scattering. Therefore, poles were combined

separately for each polarization. This resulted in two separate signatures for each

target. For best results, an operational target recognition system could alternate the

polarization used to illuminate a target on successive pulses. The antenna required

for dual-polarization illumination is more complex than that for single-polarization

but is certainly feasible [16,81].

Examples using simulated radar data are shown in the next section. Poles are

estimated from several aspect angles via M-TLS-MPM. Combined poles are esti-

mated via PA&A to develop target signatures.

3.5 Developing Target Signatures with M-TLS-MPM

The M-TLS-MPM technique was used to estimate the poles of several tar-

gets. These included targets measured as described in Section B.1 of Appendix B or

targets simulated with various techniques described in Section C.2 of Appendix C.

Polarization is given in terms of the spherical coordinates θ, the angle away from the

z̃-axis, and φ, the angle around the z̃-axis. Diagrams of target geometry, including

coordinate axes, are given in Appendices B and C.
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The significance level P was set so that the reconstruction error would be on

the order of 1%. If much more error was present, the set of poles was considered

insufficient to represent the late-time scattering adequately. If the error was much

less than that, it was possible that scattering could be modelled with fewer poles,

resulting in smaller matrices and less computational load in the target recognition

system, as explained in the next chapter.

For each target, P was set differently, although a commonly-used setting was

P = 1.1. Setting P higher than that often resulted in the reporting of spurious

poles. The spurious poles were marked by both large variability in Ω and higher

(less negative) Ω values, particularly higher than theoretical poles, if known. Setting

P lower than that frequently resulted in increased reconstruction error, most likely

due to failing to estimate significant poles. The increased error percentage and the

visual agreement between the reconstructed signal and the original signal were such

that target recognition could have been adversely affected.

Poles were estimated for data from each aspect angle, but the poles from a few

aspect angles were left out of the signature computation for each target. Data from

the excluded aspect angles was used later as test data. In this way, test data did not

directly influence the signature computation and the test data could be independent

from the model, resulting in more meaningful tests.

Simulated scattering from three right circular cylinders was examined. Sim-

ulation techniques are described in Section C.2 of Appendix C. The M-TLS-MPM

results are compared to published numerical results for cylinder poles, which are

discussed in Section C.1.1 of Appendix C. The published results were found via a

completely different technique from MPM, which did not utilize late time scattering,

but instead relied on analysis of coupling matrices [86]. The θ-polarized results (mag-

netic field perpendicular to the cylinder’s axis) were dominated by a single damped

sine term, which was consistent with published numerical results for cylinder poles.

The φ-polarized signals (electric field perpendicular to the cylinder’s axis) did not
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exhibit the same behavior as the θ-polarized signals at the same aspect angles. That

is because different scattering phenomena, creeping waves, dominate the φ-polarized

case. While the same poles are theoretically present, the overall late-time signal was

much weaker in the φ case, so late-time results were dominated by effects other than

the SEM poles, such as noise and Gibbs oscillations. For the 3” long cylinder, the

θ-polarized scattering was on the order of 50 times greater in amplitude than the

φ-polarized scattering, or on the order of 2500 times greater (about 34 dB greater)

in power.

An observer familiar with forced resonances (from steady-state illumination)

on a cylinder may expect that the unforced resonances are similar in frequency.

Forced resonances include resonant modes along the length of the cylinder such

that the cylinder length equals integer multiples of a half wavelength. Such modes

would be most strongly excited by θ-polarized incident waves. In addition, there

will be resonant modes such that the circumference equals integer multiples of the

wavelength. These modes would be most strongly excited by φ-polarized incident

waves [4, 59]. These modes do not correspond to the poles found by Merchant, et

al. [86] or Vechinski and Shumpert [137]. Natural (unforced) resonant frequencies do

vary with cylinder dimensions, but are not found at the same oscillating frequencies

as the forced resonant modes. For a right circular cylinder of 1” diameter, setting

wavelength equal to circumference πd results in a frequency of ω = (2πc)/(πd) =

23.62 Grad/s (c is the speed of light). For a cylinder of 5” length, setting λ/2 equal

to length L results in ω = (2πc)/(2L) = 7.42 Grad/s.

The poles and combined poles found for the cylinder of length 5 inches and

diameter 1 inch are shown as dots in Figures 3.46 and 3.47. Combined poles, those

produced by the PA&A algorithm from the poles estimated for each azimuth, are

shown as squares. The bottom of each image includes part of the lower half-plane.

Some poles computed by Merchant, et al. [86], specifically those with the smallest-

magnitude damping and oscillating rates, are shown as circles. Two pole pairs es-
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timated via M-TLS-MPM are close to Merchant’s pole pairs. For this target and

θ polarization, reconstruction error was typically on the order of 0.01% and always

under 0.3%. With error that small, reducing P was an option, but with only three

pole pairs in the signature, there was no need to reduce the number of poles. For

φ polarization, 14 combined poles were found and reconstruction error ranged from

3% to 5%.

As was noted in Section 3.3.3, the estimation error on the Ω parameter of each

pole was greater, relative to parameter size, than the error on the ω parameter. That

led to the horizontal pattern of pole estimates (dots) in Figures 3.24, 3.25, and 3.26.

In Figure 3.47, horizontal displacement of pole estimates can again be seen. The

weakness of the φ-polarized signal leads to a smaller SNR and greater error on the

Ω estimate than was seen in the θ-polarized case in Figure 3.46.

A three-inch cylinder, with a diameter of one inch, was also examined. Results

are shown in Figures 3.48 and 3.49. Prior to the results shown in these figures, poles

were found for P = 2, but after comparison with lower-P results, it was determined

that many of the poles found for P = 2 were spurious. The spurious poles could

be distinguished by their smaller-magnitude damping rates. For P = 1.1, only

two pole pairs were found, one of which matched the lowest-ω published pole well.

Reconstruction error was less than 1% even with only two combined pole pairs.

Reconstruction error was under 0.4% for θ polarization and ranged from 4% to 9%

for φ polarization, for which 14 combined poles were found. As was seen with the

five-inch cylinder, larger relative errors on Ω lead to a horizontal pattern of dots seen

in Figure 3.49.

Scattering from a six-inch-long cylinder, with a diameter of two inches, was

also simulated. The poles and combined poles estimated for this target are shown

in Figures 3.50 and 3.51. This cylinder had the same proportion of length to radius

as the three-inch cylinder. In theory, the poles found for this target would have half

the values of ω and Ω as the three-inch cylinder. The combined poles found for
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Figure 3.46 Poles estimated (·) from 5” by 1” diameter cylinder, θ-pol, using M-
TLS-MPM, no noise added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.47 Poles estimated (·) from 5” by 1” diameter cylinder, φ-pol using M-
TLS-MPM, no noise added, P = 1.3, combined poles (¤), and published poles (◦)
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Figure 3.48 Poles estimated (·) from 3” by 1” diameter cylinder, θ-pol, using M-
TLS-MPM, no noise added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.49 Poles estimated (·) from 3” by 1” diameter cylinder, φ-pol using M-
TLS-MPM, no noise added, P = 1.3, combined poles (¤), and published poles (◦)
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θ polarization in Figure 3.50 matched the published poles well. As with the other

cylinders, the φ polarization combined poles shown in Figure 3.51 did not match

published results, because the much-weaker φ-polarized scattering was more affected

by noise than the θ-polarized scattering. The estimated real axis combined pole in

the φ case was a fairly close match to the published real axis pole.

A 4.5” square plate with a thickness of 0.1” was illuminated in a simulation

with φ-plane polarization. The poles and combined poles found for the plate are

shown in Figure 3.52 and 3.53 for φ and θ polarizations, respectively. The bottom of

Figure 3.52 includes part of the lower half-plane, so some lower-half-plane poles close

to the real axis are shown near their upper-half-plane counterparts. Published poles

determined by Sun, Chen, Nyquist and Rothwell [130] are shown as well. The poles

estimated via M-TLS-MPM (shown as dots) occurred in tight clusters, indicating

good agreement between the various aspect angles. One of the pairs found was a

good match to the published pole pair at −2.175±j5.331. Reconstruction error with

the combined poles (shown as squares) was under 1.4%.

The plate target was examined again, this time with θ-plane polarization at

the same aspect angles. Results are shown in Figure 3.53. One combined pole pair

was a good match to both the φ-plane measurement and the lowest published pole

at −2.175± j5.331. The other combined pole had about the same |ω| value as a pole

found in the φ case, but greater |Ω|. Again, since a portion of the lower half-plane is

shown, the lower right corner of Figure 3.53 includes both halves of some pole pairs.

Reconstruction error for this target was under 0.4%.

The poles found via M-TLS-MPM were compared to the poles computed by

Long [68] for cubes and rectangular blocks. Long listed normalized poles for a cube

and two rectangular blocks with side lengths in the same proportion as the targets

named Block 112 and Block 123. These targets are discussed in detail in Appendix C.

The combined poles did not match the published poles at all. The damping rates

observed for Long’s poles were much greater in magnitude than the damping rates
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Figure 3.50 Poles estimated (·) from 6” by 2” diameter cylinder, θ-pol, using M-
TLS-MPM, no noise added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.51 Poles estimated (·) from 6” by 2” diameter cylinder, φ-pol using M-
TLS-MPM, no noise added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.52 Poles estimated (·) from 4.5” square plate, φ-pol, using M-TLS-MPM,
no noise added, P = 1.3, combined poles (¤), and published poles (◦)
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Figure 3.53 Poles estimated (·) from 4.5” square plate, θ-pol using M-TLS-MPM,
no noise added, P = 1.1, combined poles (¤), and published poles (◦)

3-66



estimated by M-TLS-MPM. However, the signals were easily reconstructed using the

combined poles. The discrepancy between Long’s poles and the ones estimated here

may be due to differences between the Method of Moments implementations used by

Long and used in this research. The discrepancy is not due to the PA&A procedure,

because the individual poles estimated by M-TLS-MPM at each azimuth did not

match those found by Long. Long simulated the surface currents on a section of

each block, with an eighth of the total surface area (one quarter of the area of three

faces), including one corner. He determined the response of the complete object by

symmetry, which is a common procedure in electromagnetic analysis [105, 144] and

is analogous to decomposing a function f(x) into odd and even components. Long’s

choice of boundary conditions at the edges of the sections may have changed the

current modes present in the answer, but it is not clear from the article [68] which

boundary conditions were used.

For this research, the response of the entire surface was simulated for each

block. Simulating the entire surface of the object eliminated any errors that could

have been introduced by combining simulated portions of the object.

It should also be noted that Long’s procedure for finding poles is completely

different in concept from M-TLS-MPM. Long found poles by finding zeros of the

mutual impedance matrix developed in a scattering simulation. His method makes

no use of late-time scattering, so it is unable to determine which poles are associated

with significant scattering, as opposed to weak, insignificant scattering. Given what

was seen in the case of the sphere and cylinders, it is likely that the higher-ω poles

were associated with weaker scattering modes, and were too weak to show up. Long’s

technique is also unable to make use of measured scattering data. In contrast, M-

TLS-MPM relies on late-time scattering data from simulations or measurements,

which may contain various forms of interference in addition to actual scattering.

While M-TLS-MPM is somewhat resistant to white noise, it will react to narrowband

interference such as Gibbs oscillations. Such interference may result in pole estimates
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that represent the interference as much as the resonant scattering. The simulated

data may be corrupted by Gibbs Phenomenon, although a smoothing procedure was

applied to it to reduce the effect of step discontinuities found in the frequency-domain

data. For some targets, the received signals are shown in the same plots as signals

reconstructed using estimated poles. The plots demonstrate that the estimated poles

accurately model the received signals.

The poles and combined poles found for Block 112 for φ polarization are shown

in Figure 3.54 along with published poles. The estimated poles did not match the

published poles. For this target, reconstruction error was around 1.5% at all aspect

angles with six poles.

Figure 3.55 shows the poles and combined poles for θ-polarized scattering from

Block 112. Different poles were found, although the pole pair in the neighborhood

of -0.4 GN/s ±j0.8 Grad/s was close to the lowest published pole. Nine poles were

found and reconstruction error ranged from 0.6% to 4.3%.

Examples of signal reconstruction for Block 112 are shown in Figures 3.56

and 3.57. The target aspect used in Figure 3.56 was θ = 36◦ and φ = 0◦. For

Figure 3.57 the target aspect was θ = 39◦ and φ = 0◦. The coordinate system for

each target is explained in Appendix C. The target aspects chosen for these figures

had reconstruction errors that were typical of all measurements for this target at

the indicated polarizations. The poles used to reconstruct the signals were adequate

to capture the signals’ dynamics with little error. The amplitude of the late-time

scattered signal was on the order of 0.003 millivolts per meter for both polarizations,

making it comparable to the φ-polarized scattering from cylinders.

The poles found for Block 123 are shown in Figure 3.58. The incident polar-

ization was in the φ direction. Published poles [68] are shown as circles. One of the

pole pairs estimated via M-TLS-MPM is close to the published pole pair at -3.4614

GN/s ±j14.0453 Grad/s. For this target, reconstruction error was under 5% (under

3% at most aspect angles) with 14 poles.
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Figure 3.54 Poles estimated (·) from Block 112, φ-pol using M-TLS-MPM, no noise
added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.55 Poles estimated (·) from Block 112, θ-pol, using M-TLS-MPM, no
noise added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.56 Signal reconstruction example for Block 112, φ-pol, error 1.6%
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Figure 3.57 Signal reconstruction example for Block 112, θ-pol, error 2.9%
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Figure 3.58 Poles estimated (·) from Block 123, φ-pol using M-TLS-MPM, no noise
added, P = 1.3, combined poles (¤), and published poles (◦)
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Figure 3.59 Poles estimated (·) from Block 123, θ-pol, using M-TLS-MPM, no
noise added, P = 1.6, combined poles (¤), and published poles (◦)
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The θ-polarized scattering from Block 123 was analyzed, and the poles and

combined poles are shown in Figure 3.59. The combined poles were different from

the published poles, although in the θ-polarized case, one pole pair was close to

the lowest-ω published pole at -4.5784 GN/s ±j8.5858 Grad/s. Since a portion of

the lower half-plane is shown, the lower edge of Figure 3.59 includes the complex

conjugate of one pole pair at approximately -0.45 GN/s -j1.5 Grad/s. Reconstruction

error for most aspect angles (22 out of 32) was under 4%, although a few data sets

had much higher reconstruction error. The worst case was 45% error, indicating that

the combined set of poles did not represent the target well at those aspect angles and

θ polarization. A good set of poles has not yet been achieved for this target, when

illuminated with θ polarization. Block 123 may require different tolerances in the

PA&A algorithm, resulting in more poles being included in the signature. Another

approach is to use more than one signature at each polarization (θ and φ) to describe

this target, which is undesirable because a goal of this research was to represent a

target with the most compact signature possible. Still, it may be required for this

target. If multiple signatures are used at each polarization for Block 123, it will

be necessary to determine how many signatures to use, and which aspect angles to

associate with each signature. Further refinement of the Block 123 signature via a

different P setting in M-TLS-MPM, modification of PA&A and/or development of

separate signatures is left to future research.

Examples of signal reconstruction for Block 123 are shown in Figures 3.60

and 3.61. The poles used to reconstruct the signals were adequate to capture the

signals’ dynamics with little error. For the θ-polarized case, the signal reconstruction

shown has higher error than desired, but this fit may still allow target recognition.

The data sets that had higher reconstruction error than this one will probably result

in incorrect target recognition. The amplitude of the scattered signal in Figure 3.60

was on the order of 0.001 mV/m and that shown in Figure 3.61 was on the order of

3-72



0.010 mV/m. he scattered signals were comparable in amplitude (and thus power)

to the φ-polarized scattering from cylinders.

The poles and PA&A combined poles found for the 3” cube are shown in

Figure 3.62. The incident polarization was in the φ direction. Published poles are

shown as circles. One of the pole pairs estimated via M-TLS-MPM is close to the

published pole pair at -2.3689 GN/s ±j14.3571 Grad/s. For this target, six poles

were found and reconstruction error ranged from 0.8% to 3.0%.

The θ-polarized scattering from the 3” cube was analyzed, and the poles and

combined poles are shown in Figure 3.63. Six poles were found, which were different

from the ones found in the φ polarization case. The estimated poles fell in the lower-ω

region of the s-plane, with most ω components less than 5 Grad/s. Reconstruction

error for most aspect angles was under 3%, although a few data sets had error

between 4% and 16%.

Examples of signal reconstruction for the cube are shown in Figures 3.64

and 3.65. The error was sufficiently small at all aspect angles for φ-polarization

and most angles for θ-polarization, that target recognition using this set of poles

should be effective. The signal amplitude shown in Figures 3.64 and 3.65 was on

the order of 0.010 mV/m, making it comparable to that found from φ-polarized

scattering from cylinders.

A target called Combo A was made up of Block 112 and Block 123, as described

in Section C.2 of Appendix C. The poles found for Combo A for φ and θ are shown

in Figures 3.66 and 3.67, respectively. There are no published poles for this target.

For the φ case, 10 poles (five pole pairs) were found and reconstruction error was

under 1%. In the θ case, six poles (three pairs) were found and reconstruction error

was under 1.6%, even though P was set to the lowest value used for any targets, 0.7.

For this target, the estimated poles were compared to the estimated poles of the two

objects which made up the target. The poles for Block 112 and Block 123 are shown

as circles in Figures 3.66 and 3.67.
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Figure 3.60 Signal reconstruction example for Block 123, φ-pol, error 2.9%
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Figure 3.61 Signal reconstruction example for Block 123, θ-pol, error 4.8%
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Figure 3.62 Poles estimated (·) from cube, φ-pol using M-TLS-MPM, no noise
added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.63 Poles estimated (·) from cube, θ-pol, using M-TLS-MPM, no noise
added, P = 1.1, combined poles (¤), and published poles (◦)
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Figure 3.64 Signal reconstruction example for 3” cube, φ-pol, error 2.2%
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Figure 3.65 Signal reconstruction example for 3” cube, θ-pol, error 4.1%
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Figure 3.66 Poles estimated (·) from Combo A, φ-pol using M-TLS-MPM, no noise
added, P = 1.1, combined poles (¤), and combined poles of components (◦)
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Figure 3.67 Poles estimated (·) from Combo A, θ-pol, using M-TLS-MPM, no
noise added, P = 0.7, combined poles (¤), and combined poles of components (◦)
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For φ polarization, there is close correspondence between a pole pair at ap-

proximately -0.35 GN/s ±j7.5 Grad/s and a pole pair found for Block 112. Several

pole estimates contributing to the combined pole pair at -0.42 GN/s ±j3.5 Grad/s

are close to poles from both Block 112 and Block 123. The combined pole could be

due to scattering from either of these component targets. The combined pole at -0.4

GN/s ±j15 Grad/s is close to a pole from Block 123 at -0.3 GN/s ±j15 Grad/s. For

θ polarization, the combined pole pair near -0.55 GN/s ±j7.4 Grad/s is close to the

combined pole from Block 112 at -0.4 GN/s ±j7.5 Grad/s.

The poles for Combo A appeared to consist of some poles estimated for Block

112, some poles estimated for Block 123, and some other poles. That is consistent

with theory. A target composed of multiple objects may have late-time scatter-

ing dominated by the interaction between the targets, or by the target signatures.

However, conclusions drawn for this target must be considered preliminary. As was

discussed above, some adjustment to the PA&A algorithm may be necessary to bet-

ter capture the signature of Block 123. Some of the combined poles in the Block

123 signature may move, so the comparison between the Combo A signature and the

Block 123 signature will change. This analysis is left to future research.

A target called Combo B was made up of a 4.5” square plate and a Block 112.

It is described further in Section C.2 of Appendix C. The poles found for Combo B

for φ and θ are shown in Figures 3.68 and 3.69, respectively. There are no published

poles for this target. As with Combo A, the estimated poles were compared to the

estimated poles of the two objects which made up the target. The poles for the

square plate and Block 112 are shown as circles in Figures 3.68 and 3.69.

For the φ case, nine poles were found and reconstruction error was under 1%.

The combined pole at approximately -1.5 GN/s ±j9.0 Grad/s was an excellent match

to a pole from the square plate. There are individual poles displaced in Ω value from

a square plate combined pole at -0.055 GN/s ±j1.5 Grad/s. If more poles were

estimated in this area (such as via higher P setting in M-TLS-MPM), or if PA&A
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Figure 3.68 Poles estimated (·) from Combo B, φ-pol using M-TLS-MPM, no noise
added, P = 0.9, combined poles (¤), and combined poles of components (◦)
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Figure 3.69 Poles estimated (·) from Combo B, θ-pol, using M-TLS-MPM, no
noise added, P = 1.2, combined poles (¤), and combined poles of components (◦)
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tolerances were different, a combined pole could have been produced here. In the θ

case, five poles were found and reconstruction error was under 6%. The error was

particularly bad in the θ case, so various significance settings up to P = 2 were

considered to attempt to find an error minimum. There was no significant change

in error from P = 1.2, with five poles, to P = 2.0, with nine poles. Given the

dispersed nature of the estimated poles, it is likely that some spurious poles were

estimated. Reducing P below 1.2 would focus on poles representing actual scattering

dynamics, although error is unlikely to decrease. Varying the tolerance box and other

parameters in the PA&A algorithm would result in the combined pole at -0.8 GN/s

±j7.5 Grad/s being interpreted as two or more nearby poles. One of these would

be closer to the Block 112 pole at -0.4 GN/s ±j7.5 Further development of the

signatures for the Combo B target is left to future research.

To summarize the results in this section, the M-TLS-MPM technique was ap-

plied to the scattered signals of several targets. The targets were primarily of simple

geometric shapes, but some were combinations of simple shapes. The results were

mixed. In some cases, results matched theory and other published results well. In

other cases, the pole estimates did not match well, but signals reconstructed with

the estimated poles matched the original signals well.

For sphere theoretical data, M-TLS-MPM can find many poles accurately, but

only in the case of very low noise. Sphere resonance modes are weaker at higher

frequencies, and are reduced by the window applied to the data in the frequency

domain, so even small amounts of noise mask their effects. Similar results were

found for simulated scattering data from cylinders. For each cylinder, two to four

poles were found for the θ-polarized scattering that matched previously published

poles. Other published poles were likely associated with weak scattering modes,

thus were not significant contributors to late-time scattering. Signal reconstruction

was good, even with those few poles, indicating that the estimated poles adequately

modelled the important dynamics of the signal.
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As with the sphere, only the published poles for the cylinders and square plate

with the smallest |ω| and |Ω| were significant enough to be estimated. The scattering

from a square plate matched the lowest-ω published pole pair well given either θ or

φ polarization. The cylinders matched the lowest-ω published poles in the analysis

of θ polarization scattering. The φ-polarized scattering from circular cylinders did

not match the published poles because scattering at that polarization was weak and

dominated by Gibbs oscillation and noise. The φ-polarized scattering was in the

neighborhood of 34 dB lower in power than the θ-polarized scattering. However, the

received signals were reconstructed well with the estimated poles, as was true in the

θ polarization case. The poles estimated for φ polarization may represent noise and

Gibbs more than the cylinder’s actual resonance. Given the much weaker late-time

signal from cylinders at φ polarization, it is important to estimate target signatures

using two orthogonal polarizations. A target recognition system exploiting late-time

scattering should also make use of two orthogonal polarizations, to ensure the θ

polarization is captured.

The poles found via M-TLS-MPM did not match the poles computed by Long

[68] for cubes and rectangular blocks. However, the signals were easily reconstructed

using those poles, indicating that the estimated poles represented the dynamics

actually present in the signals, although these were not the poles reported in the

literature via Long’s technique.

Long simulated portions of the target and deduced surface currents on the

entire object via symmetry. The boundary conditions he used at the symmetry

planes are not clearly apparent from the article [68]. It would be useful to revisit

Long’s work, simulating blocks via MoM or some other computational technique and

finding poles via the impedance matrix. Such work is left to future research.

The frequency-domain data for the cube and rectangular blocks contained some

step discontinuities which would give rise to a significant amount of Gibbs phe-

nomenon, which could give rise to spurious pole estimates in M-TLS-MPM. For the
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block and cube targets, the signal power in late time was comparable in amplitude

and power to that of the φ-polarized scattering from cylinders. Like the cylinders

(given φ-polarization), the poles found for the cube and blocks failed to match the

published poles found via impedance matrix analysis. Since the signal was so weak,

it is plausible that noise and Gibbs oscillations were significant contributors in late

time, and that the poles estimated by M-TLS-MPM represented Gibbs oscillations

more than the late-time scattering predicted by SEM theory. That should not be

viewed as a failure or error in the simulation used in this research, but as a limitation

of the applicability of its results. The same simulation code was used for the square

plate, with good pole estimation and signal reconstruction results.

If late-time backscatter scattering for the cube and blocks was so weak that it

could not be found among Gibbs oscillations, then the signals for those targets may

be too weak for proper pole estimation via M-TLS-MPM or any similar technique.

Scattered signals from directions other than the backscatter direction (opposite of

the incident direction) may provide stronger signals in late time. If stronger (and

less noise-dominated) signals are not available for analysis, weakly resonant targets

such as isolated cubes and blocks may be unsuited for identification by the target

recognition technique described in Chapter IV. The technique may be limited to

more strongly resonant targets.

Although Gibbs oscillation appeared to be a significant source of error in this

research, it will be less apparent in an actual application of this technique. Gibbs

phenomenon is found in signals that have been translated from the frequency domain

into the time domain. Step discontinuities in the frequency domain produce the

oscillations [62]. In actual operation of a system using this algorithm, the signals

of interest would be generated by an impulse radar, and would not contain Gibbs

oscillations. The signals would contain other forms of noise, some of which can be

characterized as additive, white, Gaussian noise, to which M-TLS-MPM exhibits

some resistance.
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The poles found by M-TLS-MPM tended to be stable over a wide variety of θ

aspect angles. They were not precisely aspect-independent, but tended to have little

variation in ω. The variation in Ω was somewhat larger relative to the parameter

value, but still consistent with the results seen for synthetic data at approximately 9

dB SNR. Signatures were developed by combining the poles found at various aspect

angles for a given target at a single polarization.

When poles appeared near the same location when estimated from data from

many azimuths, the PA&A algorithm was able to average them and produce a com-

bined pole that represented an average of the estimates of all poles in that location.

The parameter values used in PA&A were selected to account for the pole distribu-

tions seen in most targets, i.e., separate clusters of poles. For some targets, such as

Block 123, the poles did not appear in neat, distinguishable clusters. In that case,

parameter variations within PA&A could have a significant effect on the combined

poles used in the target signature. More research is needed to determine the proper

settings within PA&A to find the combined poles for those targets that lead to the

best signal reconstruction. Data from M-TLS-MPM with several settings of the P

parameter should be input to PA&A to look for interactions in parameter variations

in both programs.

3.6 Chapter Summary

M-TLS-MPM is an improved variant of MPM which combines features of TLS-

MPM and MMP3. It makes use of the iterative LRHA to suppress noise in the signal

prior to eigenvalue estimation. The LRHA converges quickly, and little change is

seen in parameter estimates after 4 iterations.

In tests with complex-valued signal data, the technique compared favorably

with both MMP3 and TLS-MPM. For noise power less than -13 dB (SNR greater

than +9.4 dB), the benefit was slight because TLS-MPM and MMP3 were already

achieving parameter estimation errors close to the Cramer-Rao bound computed by
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Kumaresan and Tufts for this data. At -11 dB noise power (+7.4 dB SNR), the

estimates of ω were superior to those found either by TLS-MPM or MMP3 by 10 to

15 dB.

In tests with real-valued signals, M-TLS-MPM was able to estimate the pa-

rameters of a signal with three pole pairs and a real axis pole correctly. The results

depended on an accurate assessment of the SNR of the data, which was used to set

a significance threshold that determined the number of poles estimated. The ω es-

timates appeared to be unbiased, although some bias was apparent in the estimates

of Ω. Variance was greater in the Ω case as well. The worst bias and variance were

seen in the estimate of the real axis pole.

This research is the first to characterize the noise-suppression ability of the

LRHA. It was found that a single iteration of the LRHA can reduce noise (defined

as MNTSE) by 11.7 dB. An additional iteration results in further noise reduction of

0.5 dB, but after that there is no improvement.

For theoretical sphere poles and published poles of cylinders and plates, the

higher-ω poles appeared to be associated with weaker scattering modes, so M-TLS-

MPM was unable to form estimates of them. Lower-ω poles were estimated accu-

rately for the sphere and plate, as well as the θ-polarized case for the cylinders. For

the plate and θ-polarized cylinders, signal reconstruction was good, even with only

one or two pole pairs, indicating that the estimated poles adequately modelled the

important dynamics of the signal.

For the sphere, signal reconstruction was poor. That is due to the large number

of scattering modes that are marginally significant. The poor signal reconstruction

may prevent or limit the use of this algorithm with spherical or nearly-spherical

targets. Fortunately, existing targets of interest, such as land mines or exterior

components of vehicles, tend to be of other shapes, such as cylinders, rectangular

plates, and thin wires.
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Scattering from several simple-shape targets was simulated in the frequency do-

main using two implementations of the method of moments. The late-time portions

of the scattered signals were analyzed using the M-TLS-MPM algorithm. Signatures

were developed by combining the poles found at various aspect angles for a given

target at a single polarization.

The φ-polarized scattering (perpendicular to the axis) from circular cylinders

did not match the published poles because scattering at that polarization was weak

and dominated by Gibbs oscillation and noise. The weakness of φ-polarized, late-

time scattering from cylinders is a problem that can be solved by using pulses of

different polarizations in the radar transmitter used for target recognition. If pulses

in a short sequence have differing polarization (e.g., alternating vertically-polarized

pulses with horizontally-polarized pulses) then the response from a cylindrical object

will be dominated by the stronger, θ-polarized scattering.

The poles found via M-TLS-MPM did not match the poles computed by

Long [68] for cubes and rectangular blocks. However, the signals were easily re-

constructed using those poles, indicating that the actual poles of the signals were

found, although these were not the poles reported in the literature via Long’s tech-

nique. The discrepancy between Long’s poles and the ones estimated here may have

been due to the weakness of the late-time scattered signal from those targets. The

frequency-domain data for the cube and rectangular blocks used in this research

contained some step discontinuities which would give rise to some Gibbs oscillation,

which may have been a significant part of the simulation result in late time, given

the true signal’s weakness. A signal that is generated in the time domain, such

as ultra-wideband, short-pulse radar scattering, will not have Gibbs phenomenon.

Such scattering will still be subject to other forms of noise. Noise approximating the

characteristics of additive, white, Gaussian noise can be expected. This technique is

designed to be somewhat resistant to such noise, and in fact is more resistant than

the previous MMP3 and TLS-MPM methods, as was shown in Section 3.2.1.
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The poles found by M-TLS-MPM were stable over a wide variety of θ angles for

most targets. They were not precisely aspect-independent, but tended to have little

variation in ω. The variation in Ω was somewhat larger relative to the parameter

value, but still consistent with the results seen for synthetic data at approximately

9 dB SNR.

The pole estimation technique presented in this chapter is a critical compo-

nent of an overall target recognition method. The quality of the signature library

built with the M-TLS-MPM algorithm directly affects the performance of the target

recognition algorithm developed in the next chapter.
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IV. Reading from the Library: Stochastic Estimation Research

4.1 Overview

The target recognition algorithm involves comparing a signal to a known set of

signal models. The set of signal models is termed a library. The sources of the data

from which the library is built were presented in Chapter III, and the signatures used

to fill the library were developed. In this chapter signals are compared to signatures

in the library. The targets for which signatures were included in the library were

simple shapes and combinations of two simple shapes. Targets are discussed more

completely in Appendix B (for measured targets) and Appendix C (for simulated

targets). For each test of the algorithm, from four to ten targets were included in

the library. Typically four were used so that display and analysis of results would

be accomplished more easily.

To recognize the target, several Kalman filters were implemented in a parallel

structure known as MMAE-MAP [76]. Each filter contained a linear system model

for a target type, based on the natural frequencies (Ωm, ωm) estimated as presented

in Chapter III. Each filter’s model was a set of simultaneous linear differential

equations which were solved in an equivalent discrete-time form, i.e. via difference

equations. A diagram of the target recognition algorithm was shown in Figure 1.1,

and is repeated for review in Figure 4.1:

The signal model, with data sampled at evenly-spaced points ti, is represented

by:

y(ti) = 2
M

∑

m=1

exp(Ωmti) [Am cos(ωmti) − Bm sin(ωmti)] u(ti − t0) (4.1)

The unit step function u(ti) zeros out data prior to the start of late time, t0. The

scattered radar data from times prior to t0 did not fit the signal model in Equa-

tion (4.1), so it was not used by this algorithm. Each target can have a different
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Figure 4.1 Target Recognition System Diagram

number of significant poles in its late-time scattered signal. For signal models used

to represent measured data, typically up to ten damped sinusoid terms and up to

one non-oscillating (ωm = 0) term were used.

In addition to the frequencies, each term in the signal is characterized by two

coefficients (Am, Bm). The values of these coefficients are unknown, but they can

be assumed constant during the duration of the scattered data. They depend on

the aspect angle, which is the angle from which the target is viewed. They are

also dependent upon the polarization of the scattered field. The radar receiver is

assumed to have a linear polarization, and the target’s orientation relative to the

antenna polarization is assumed not to change during the duration of a signal. The

coefficients determine the amplitude of the signal. If the late-time scattered signal is

viewed as the solution to a differential equation, then the coefficients are the initial

conditions assigned to that equation.
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A concern early in the research was that lack of knowledge of the parameters

would impede the target recognition process. A more elaborate version of the target

recognition algorithm was considered, which attempted to estimate the coefficients

along with the signal. The coefficients were specific to each target, so coefficient

estimation had to be performed within each Kalman filter to be effective. The

elaborate version implemented an adaptive parameter estimation (APE) technique

that found the maximum likelihood estimates of states and uncertain parameters via

Rao Scoring [76]. This technique was first applied to Kalman filters by Abramson [99]

for parameters in the covariance matrices of the measurement noise (R) and the

dynamics noise (Qd). It was applied by Maybeck [75] to the state transition (Φ),

control input (Bd) and measurement output (H) matrices of the system model.

Each filter in the MMAE-MAP filter bank included its own APE subroutine. This

led to a great increase in both code complexity and required computation. It was

later determined that an appropriate filter tuning strategy could allow a Kalman

filter with good frequency estimates to reconstruct the signal, even with incorrect

coefficient values and no APE. A much simpler recognition algorithm without APE

was possible, so the algorithm implementing APE was abandoned prior to a complete

evaluation.

The synthetic data described in Section 3.3.1 was used to test the recogni-

tion algorithm in addition to measured and computational data. Filter models were

developed based on the poles estimated in Chapter III. For the performance evalua-

tion, the following metrics were compared: fraction of attempts resulting in correct

identification, fraction of attempts resulting in incorrect identification, and frac-

tion of attempts in which the algorithm had insufficient information to declare an

identification. Results for low-SNR cases are also displayed in terms of ‘confusion

matrices,’ as explained in Section 4.3.2. Varying amounts of noise were added to

the signal to gauge the effects of noise on the performance of the MMAE-MAP and

E-Pulse [112,113] algorithms.
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The technique developed in this research applies only to late-time scattering.

That is because late-time scattering can be represented in a form that easily converts

into a simple, analytic transfer function with a limited number of significant terms

that can be identified. If the early-time scattering could be turned into an analytic

transfer function, a state-space model could be developed from the transfer function

and a very similar algorithm could be applied to all scattering. Instead, while the

frequency-domain scattering from an object can be viewed as a transfer function [87],

it is not an analytic one, but a set of complex-valued points measured or simulated

at various frequencies.

Linear system models for target late-time scattering are presented in Sec-

tion 4.2. The MMAE-MAP target recognition algorithm is presented along with

test results in Section 4.3. For comparison, a target recognition algorithm using the

E-Pulse technique is presented in Section 4.5.

4.2 Applying the Kalman Filter

To develop the linear system model, a transfer function is found for each fre-

quency term (pole-pair transform) of Equation (2.29). This result can be obtained

via the sum of two conjugate terms of Equation (2.16) or via the Laplace transform

of one term of Equation (4.1):

Tm(s) =
2Am(s − Ωm) − 2Bmωm

(s − Ωm)2 + ω2
m

=
2Ams − 2(AmΩm + Bmωm)
s2 − 2Ωms + (Ω2

m + ω2
m)

(4.2)

Equation (4.2) describes a second-order dynamic system. Examples of second-order

systems include spring-mass systems and parallel RLC circuits [30], both of which

are described below.

When discussing second-order systems, the term ‘damping’ is often used. A

system may be described as underdamped, overdamped, or critically damped, based
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on the damping ratio ζ. The term ‘damping’ used in this way is distinct from the

damping frequency or rate Ω, the real part of the natural frequency s, although Ω

is related to ζ. An underdamped system has a response which oscillates and has a

decaying magnitude, in other words, a damped sinusoidal response. Overdamped and

critically damped systems have a non-oscillating response. The quantities associated

with natural resonance and system response concepts are compared and contrasted

in Table 4.2. The concept of damping ratio is not used in this research; it is presented

here only to distinguish it from the damping rate Ω.

Natural Second-order
Resonance System
Concepts Concepts

Natural Frequency |s| ωnatural

Damping Ratio |Ω|/|s| ζ
Damping Frequency (Rate) |Ω| ζωnatural

Oscillating Frequency ω ωnatural

√

1 − ζ2

Table 4.1 Comparison of Resonance and Response Concepts

Equation (4.2) is a linear combination of two rational transfer functions. A rational

function is the ratio of two polynomials. A 2nd-order transfer function applicable to

a variety of physical systems has the form [30]:

Y (s) =
s + C

s2 + 2ζωnaturals + ω2
natural

(4.3)

where C is a constant. The roots of the denominator of Equation (4.3) are:

s, s∗ = −ζωnatural ± ωnatural

√

1 − ζ2 = Ω ± jω (4.4)

Two examples where Equations (4.3) and (4.4) apply are spring-mass systems

and parallel RLC circuits, which consist of resistive, inductive, and capacitive ele-

ments. For a spring-mass system, ωnatural =
√

K/M , and ζ = f/(2
√

KM), where

K=spring constant, M = mass, and f is friction [30]. For a parallel RLC circuit,

ωnatural =
√

LC
−1

, ζ =
√

LC/(2RC), Ω = (−2RC)−1, and ω =
√

(LC)−1 − (4R2C2)−1,
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where R is resistance, L is inductance, and C is capacitance [95]. Either way, the

differential equation is of the same form, so the Laplace-domain transfer function is

of the same form.

Returning to the transfer function for late-time scattering, it is noted that

some signatures include poles on the real axis, which correspond to non-oscillating

exponential decay in the time domain. If ωm is zero, the transfer function simplifies

somewhat. The conjugate pole pair then becomes a single pole on the −Ω axis, with

a real residue (coefficient) and the transfer function:

Tm(s) =
2Am(s − Ωm)

(s − Ωm)2
=

2Am

s − Ωm

(4.5)

Each conjugate pole pair, i.e., each pair of poles sm, s∗m in which s∗m = Ωm−jωm, was

represented by two states based on the Ωm and ωm frequencies from Equation (4.1).

Each real axis pole will be represented by a single state. The coefficients Am and

Bm from Equation (4.1) were placed in the control input vector. The control vector

ū represented the waveform of the incident radar pulse, i.e., the pulse transmitted

from the radar to the target.

The measurement ȳ(ti), control input ū(ti), and residual r̄(ti) for the experi-

ments conducted, had only one element each, but are shown herein as vectors instead

of scalars for consistency with the Kalman filter equations shown in Section 2.4.1.

The residual covariance A and the measurement noise covariance R also had one

element each, so the term ‘variance’ applies to each of them, rather than ‘covariance’,

but they are shown as matrices to be consistent with Section 2.4.1.

The target signatures used in this research may consist of ten or more conjugate

pairs of poles, plus possibly one or two real axis poles. For ease of presentation, an

example with only five poles is shown. A five-pole model with two pole pairs and

one real pole in observer canonical form [106] looks like this:
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F =























2Ω1 1 0 0 0

−Ω2
1 − ω2

1 0 0 0 0

0 0 2Ω2 1 0

0 0 −Ω2
2 − ω2

2 0 0

0 0 0 0 Ω3























(4.6)

B =























2A1

−2(A1Ω1 + B1ω1)

2A2

−2(A2Ω2 + B2ω2)

2A3























(4.7)

H =
(

1 0 1 0 1
)

(4.8)

D = 0 (4.9)

It is also possible to formulate the model in control canonical form [106] as was done

by Pascoe, Wood, Maybeck, and Wood [102,103].

The signal model is a continuous-time process with sampled data. The system

dynamics model equations were developed in continuous-time form and converted to

sampled-data form. To develop a linear system model representing this signal, fre-

quencies were expressed in units of gigaradians per second (Grad/s) and giganepers

per second (GN/s), or tens of Grad/s and tens of GN/s, or hundreds of Grad/s and

hundreds of GN/s. To be consistent, the sample period used to generate the filter

equations were in units of nanoseconds (ns), tenths of ns, or hundredths of ns. The

order of magnitude chosen for the units depended on the size of the highest frequency

of the target. Since frequencies (Ωm, ωm) in the signal model are always multiplied
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by times (ti = i∆t), the products (Ωmti, ωmti) are unaffected by the change in units,

as are the z-Transform frequencies zm, z∗m = exp(Ωmti ± jωmti).

The system dynamics matrix F contains elements defined as 2Ωm and −(Ω2
m +

ω2
m). If these quantities were instead expressed in units of nepers per second and

radians per second, the magnitudes of these terms would be on the order of 1010

and 1020, in the same matrix as constants equal to 1. Such a matrix would be ill-

conditioned, meaning that computations involving the matrix would be very sensitive

to perturbations [38]. An appropriate scalar associated with the condition of a

matrix for numerical precision in mathematical operations (multiplication, addition,

etc.) may be expressed as a condition number, which is the ratio of the largest

singular value to the smallest [73, 77]. Using frequency units of gigaradians and

giganepers, and time units of nanoseconds in the signal model, the matrices of the

linear system model can be well-conditioned. The choice of units affected the size of

the off-diagonal terms of the state transition matrix Φ, which changed the condition

number of that matrix as well, but to a lesser extent than the F matrix.

The condition of the F matrix was not directly a concern, since F did not ap-

pear explicitly in the filter equations, but the Φ matrix derived from F was definitely

a concern. The Φ matrix affected the state covariance P during the propagation

phase of the filter, as shown in Equation (2.65).

A dynamics noise model appropriate for the system was generated. This noise

represented uncertainty inherent in the linear system model that represents the ac-

tual system. For the late-time transient signal shown in Equation (4.1), the most

significant form of uncertainty is the possibility of errors in the frequencies Ωm and

ωm of each term in the damped sinusoid series. Another source of uncertainty is

the presence of unmodeled terms. While there are an infinite number of damped

sinusoid terms associated with a particular target, only a finite number of terms are

significant in a given stream of data due to noise and the limits of precision. Other

terms exist, but are insignificant due to small size of the coefficients, Am and Bm.
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Uncertainty due to insignificant terms is not modeled; such uncertainty is considered

part of the noise. To generate a noise model, consider a two-state system represent-

ing a single pole pair. A five-state system is shown subsequently. Development of

the noise model began with the dynamics equation in continuous-time form:

dx̄(t)

dt
= Fx̄(t) + Bū(t) + Gw̄(t) (4.10)

Substituting in two-state partitions of the in Equations (4.6) and (4.7), the dynamics

equation becomes:

d
dt





x1(t)

x2(t)



 =





2Ω1 1

−Ω2
1 − ω2

1 0









x1(t)

x2(t)





+





2A1

−2(A1Ω1 + B1ω1)



 u(t) +





p1

−p1Ω1 + q1ω1



 w1(t)

(4.11)

and w1(t) is of strength Q1. The noise strength is defined by

E{w1(t)w1(t + τ)} = Q1δ(τ) (4.12)

where E{f} is the expected value of a random variable f and δ is the Dirac delta

function.

A five-state version of the dynamics noise model is:

Gw̄(t) =























p1 0 0

−p1Ω1 + q1ω1 0 0

0 p2 0

0 −p2Ω2 + q2ω2 0

0 0 p3

































w1(t)

w2(t)

w3(t)











(4.13)

The dynamics noise w̄(ti) has an assumed strength of
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Q =











Q1 0 0

0 Q2 0

0 0 Q3











(4.14)

The structure of the G and Q matrices reflects uncertainty in the system

model due to errors in the frequencies Ωm and ωm, m = 1, 2, 3. The terms pm and qm

were based on the uncertainty in the parameters as estimated by the M-TLS-MPM

algorithm as discussed in Chapter III. The Qm weight associated with each mode is

used for coarse tuning to reflect the quality of the estimates on any pair of states (or

single state for a non-oscillating term).

The strength of the dynamics noise assumed for each term of the signal model

in Equation (4.1) is independent of the noise assumed for the other terms. The

values Qm (m = 1, 2, 3), in the Q matrix are tuned to allow the state or pair of

states representing each term of the signal model to match that term. The matrix

GQGT is a block-diagonal matrix with a two-by-two block for each pair of states

representing an oscillating term and a one-by-one block representing a non-oscillating

term, if any:

GQGT =























p2
1Q1 Γ1Q1 0 0 0

Γ1Q1 Υ1Q1 0 0 0

0 0 p2
2Q2 Γ2Q2 0

0 0 Γ2Q2 Υ2Q2 0

0 0 0 0 p2
3Q3























(4.15)

where

Γm = (−p2
mΩm + q2

mωm), m = 1, 2 (4.16)

and

Υm = (p2
mΩ2

m − 2pmΩmqmωm + q2
mω2

m), m = 1, 2 (4.17)
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Note that since Ω is always negative, the product −pΩ is always positive and greater

uncertainty on Ω increases uncertainty overall.

A state space representation of a transfer function is not unique: an infinite

number of state-space representations are possible. It is therefore incumbent upon

the modeler to choose a representation which suits his purpose. The Kalman fil-

ters were initially implemented in the observer canonical form [106]. This form is

attractive because all states are observable in this form, which can be a very conve-

nient property. Observability refers to the ability to reconstruct or estimate states

of a given system, given knowledge of measurements and control inputs. Observabil-

ity is the ability to determine states of a system uniquely from a finite number of

observations of the system’s output [26].

The stability of the system must also be considered. The Routh-Hurwitz cri-

terion is applied to assess stability [106]. Since the system consists of the sum of

independent damped sinusoids, each of which is the solution to a differential equation

of the same form, stability can be shown for one term and thereby demonstrated for

all terms. With each term shown to be stable, it can be asserted that the sum of

these terms is also stable. To check for stability, the Routh array is assembled for

the characteristic polynomial (the denominator) of the transfer function, and shown

below.

s2 1 Ω2 + ω2

s1 −2Ω 0
s0 Ω2 + ω2 0

Table 4.2 Routh Array

The Routh-Hurwitz criterion is that the number of polynomial roots in the

right half-plane is equal to the number of sign changes in the first column of the

array. Since Ω is constrained to be negative, the value of the term −2Ω is positive,

so there are no right-half plane roots. It is known from the unforced nature of the

response that Ω must be negative for physically realizable late-time scattering.
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In addition to system model stability, the stability of the filter derived from

that model must also be considered. The filter’s stability may be established by

first demonstrating the observability and controllability of the system model [76].

The observer canonical form is intended to provide complete observability for all the

states. Complete observability is the property of a system model (not of an actual

system) that the value of all states over a time period can be determined exactly by

the measurement and control information known during that time period.

A more stringent criterion is that of stochastic observability, which also implies

complete observability [77]. For a system to be stochastically observable, there must

exist real parameters α, β, and integer N such that 0 < α < ∞, 0 < β < ∞,

0 < N < ∞, and

αI ≤
i

∑

j=i−N+1

ΦT (tj, ti)H
T (tj)R

−1(tj)H(tj)Φ(tj, ti) ≤ βI (4.18)

where the inequality X ≤ Y indicates that Y − X ≥ 0, that is, [Y − X] is positive

semidefinite. Positive semidefiniteness can be verified by checking that all eigenvalues

of the matrix are nonnegative.

Here it is useful to review some properties of the state transition matrix

Φ(ti, tj). The transition after several time steps Φ(ti, tj) is the product of the tran-

sitions for the individual time steps:

Φ(ti+N , ti) = Φ(ti+N , ti+N−1)Φ(ti+N−1, ti+N−2) · · ·Φ(ti+1, ti) (4.19)

In this research, Φ(ti, tj) depends only on the time difference (ti − tj) , so the state

transition for each sample period, Φ(ti+1, ti), is the same matrix. The transition

after N sample periods, from ti to ti+N , is thus [Φ(ti+1, ti)]
N . Reversing the order of

the times, as in Φ(ti, ti+1), indicates a backward transition. The backward transition

Φ(ti, ti+1) is simply the inverse of the forward state transition matrix Φ(ti+1, ti). A

transition over zero time intervals is given by Φ(ti, ti) = I, the identity matrix. Given
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a time-invariant state transition matrix Φ(ti+1, ti) (i.e., derived from a constant F

matrix), along with constant H and R, the test of stochastic observability simplifies

somewhat, to the requirement that all the eigenvalues of:

i
∑

j=i−N+1

{[Φ−1(ti+1, ti)]
i−j}THTR−1H[Φ−1(ti+1, ti)]

i−j (4.20)

are real, positive, and finite.

Controllability is the property of a system model (not of an actual system)

that the value of any state at an initial time can be driven to any desired final

value in finite time using a control input vector [26]. If the value of all states can

be changed as desired by the control inputs commanded during that time period,

the model is termed completely controllable. A more stringent condition is stochas-

tic controllability, which implies complete controllability [77]. For a system to be

stochastically controllable, there must exist real parameters α, β, and integer N such

that 0 < α < ∞, 0 < β < ∞, 0 < N < ∞, and

αI <

i
∑

j=i−N+1

Φ(ti, tj)Gd(tj−1)Qd(tj−1)G
T
d (tj−1)Φ

T (ti, tj) < βI (4.21)

Given the time-invariant nature of the one-sample state transition matrix

Φ(ti+1, ti) as well as Gd and Qd, the test of stochastic controllability simplifies a

bit, to the requirement that all the eigenvalues of:

αI <

i
∑

j=i−N+1

Φ(ti+1, ti)
i−jGdQdG

T
d [Φ(ti+1, ti)

i−j]T < βI (4.22)

are real, positive, and finite.

The stochastic observability and stochastic controllability of each model was

verified prior to use. The lesser standards of complete observability and complete

controllability were fulfilled by implication. Because the models were stochastically
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observable and controllable, the Kalman filters based on those models were therefore

uniformly asymptotically globally stable [77].

The state transition matrix Φ(ti+1, ti) must now be computed. In this problem,

F is constant, so Φ is the inverse Laplace transform of the resolvent, ΦL(s) =

[sI − F]−1 [77]. In the five-pole example in observer canonical form, Φ(ti, ti−1) is

thus the inverse Laplace transform of

ΦL(s) =























s − 2Ω1 −1 0 0 0

Ω2
1 + ω2

1 s 0 0 0

0 0 s − 2Ω2 −1 0

0 0 Ω2
2 + ω2

2 s 0

0 0 0 0 s − Ω3























−1

=











ΦL
1 (s) 02×2 02×1

02×2 ΦL
2 (s) 02×1

01×2 01×2 ΦL
3 (s)











(4.23)

The inverted matrix is too large to be displayed all together on the page, so it

is displayed in blocks. The bold zeros are zero matrices of the indicated dimensions.

The blocks ΦL
1 (s) and ΦL

2 (s) are defined as

ΦL
m(s) =













s
s2 − 2sΩm + Ω2

m + ω2
m

1
s2 − 2sΩm + Ω2

m + ω2
m

−Ω2
m − ω2

m

s2 − 2sΩm + Ω2
m + ω2

m

s − 2Ωm

s2 − 2sΩm + Ω2
m + ω2

m













(4.24)

for m = 1, 2, and the one-element block ΦL
3 (s) is defined as

ΦL
3 (s) =

1

s − Ω3

(4.25)

The matrix is then converted into the time domain:
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Φ(t − t0) =











Φ1(t
′) 02×2 02×1

02×2 Φ2(t
′) 02×1

01×2 01×2 Φ3(t
′)











(4.26)

in which t′ = t − t0 and, for m = 1, 2,

Φm(t′) =





cos(ωmt′) − Ωm
ωm

sin(ωmt′) 1
ωm

sin(ωmt′)

−Ω2
m + ω2

m
ωm

sin(ωmt′) cos(ωmt′) + Ωm
ωm

sin(ωmt′)



 exp(Ωmt′)

(4.27)

and Φ3 = exp(Ω3t
′).

Matrices Φ and Bd are computed from the continuous-time matrices F and B,

as explained in Section 2.4.1. Equations are shown in a form specific to this research

problem in that some matrices are shown below as constants. Time dependence is

shown explicitly below, so matrices with no time dependence shown are constant.

Because F is a constant, the state transition matrix Φ for propagating over one

sample period is the same for all sample periods, and so it will be denoted as Φ(∆t)

rather than Φ(ti − ti−1). The state transition matrix for time periods other than

one sample period will be shown with explicit time arguments. The discrete-time

control input matrix Bd is found via:

Bd =

∫ ti

ti−1

Φ(ti − τ)Bdτ (4.28)

Since Qd has as many rows and columns as the state vector, Gd can be cho-

sen equal to an identity matrix and left out of the equation. The Kalman filter

propagation equations are [77]:

ˆ̄x(t−i ) = Φ(∆t)ˆ̄x(t+i−1) + Bdū(ti−1) (4.29)

P(t−i ) = Φ(∆t)P(t+i−1)Φ
T (∆t) + Qd (4.30)
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Qd =

∫ ti

ti−1

Φ(ti − τ)GQGTΦT (ti − τ)dτ (4.31)

The Kalman filter update equations for the system, in which H and R are

constant, are [77]:

A(ti) = HP(t−i )HT + R (4.32)

K(ti) = P(t−i )HT [A(ti)]
−1 (4.33)

ˆ̄x(t+i ) = ˆ̄x(t−i ) + K(ti)[ȳ(ti) − Hˆ̄x(t−i )] (4.34)

P(t+i ) = [I − K(ti)H]TP(t−i )[I − K(ti)H]T + K(ti)RKT (ti) (4.35)

Collectively, these equations describe a Kalman filter which can read a noise-

corrupted signal of the form shown in Equation (4.1), with the assumed frequencies,

and reconstruct it optimally. While five states were shown here, a Kalman filter for

any number of poles can be constructed by augmenting the matrices in this section.

To account for additional poles, the state vector ˆ̄x adds two states for each pole pair

and one for each real axis pole. The H matrix grows by one column, and B grows

by one row, for each state added to ˆ̄x. The various square matrices add both a row

and a column for each state appended to ˆ̄x, but retain their sparse character. Every

element is zero except for an element or a two-by-two block on the main diagonal.

The filters developed in this research had from ten to twenty states. Most of these

were associated with conjugate pairs of poles, but some models had one or two states

associated with a real axis pole or non-oscillating decay term.

A consideration for a user of this algorithm is that matrices are built with

knowledge of the sample period. If a different sample period is used, the matrices

must be recomputed. A consequence of this is that filters with different assumed
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sample periods would require additional manipulation before being included in the

same filter bank. This is not a serious limitation. Once all filter matrices are com-

patible with the sample period of the measured data, there should be no impact on

the online performance of the algorithm. Another approach is to resample a data

set, via interpolation, to make its sample period compatible with the filter. To sim-

plify the research, filters developed for targets measured or simulated with different

incident bandwidths were not tested simultaneously in the target recognition algo-

rithm. Note that it is the bandwidth after zero padding (explained in Appendix D)

that determines the sample period via the IFFT. Slight changes in the measured or

simulated bandwidth, that don’t change the zero-padded bandwidth, will not change

the sample period.

4.2.1 Filter Tuning. A Kalman filter must be tuned to work properly. The

tuning process involves adjusting values within the dynamics noise covariance Qd as

well as the initial value of the state covariance matrix P. The measurement noise

covariance matrix, R, is usually set equal to the covariance of the noise actually en-

countered on the measurements. An additional tuning consideration in this research

was parameter units. As discussed in Section 4.2, the units of Ω, ω, and ∆t were

chosen to ensure a well-conditioned Φ matrix. For some filters the units of these

quantities were changed to improve performance.

For the target recognition algorithm, the ultimate goal of tuning was not the

best filter performance considered in isolation, but the filter’s performance in the

context of multiple model adaptive estimation. Good state estimation was desirable,

but good target recognition was essential. Thus, when the filter-assumed parameter

values were correct, excellent state estimation and appropriate residual properties

should ensue. However, when those parameter values were incorrectly assumed, it

would be desired for that to be reflected strongly in the residuals, rather than good

state estimation performance being preserved despite such wrong assumptions. By

so tuning the elemental filters, the various elemental filter models would be readily
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distinguished from one another and the probability flows within the MMAE would

yield desired levels of adaptability and target recognition. The filters were tuned to

work properly, but some then required additional tuning to work successfully in the

target recognition algorithm.

The signal model is a sum of independent mode terms. Taking that into

account, the noise model assumes that the uncertainty on one mode doesn’t affect

the uncertainty on other modes. That leads to a block-diagonal form of the Qd

matrix. Within each two-state mode, the uncertainty of one state is related to the

uncertainty of the other, so the non-zero blocks of Qd do have terms off the main

diagonal. In this research, tuning involved selecting the order of magnitude of the

Q matrix, then manipulating the elements on the diagonal of Q to change the noise

on individual modes. To review, the continuous-time dynamics noise strength Q is

related to the discrete-time dynamics noise covariance Qd via:

Qd =

∫ ti

ti−1

Φ(ti − τ)GQGTΦT (ti − τ)dτ (4.36)

The noise model includes three parameters, pm, qm, and Qm for each mode m.

The mode is the state or pair of states representing a single term in the damped

sinusoid signal model. There are noise parameters associated with damping (pm),

oscillating (qm), and the mode overall (Qm). It was desired to find an appropriate

ratio of pm and qm that would work for most modes of most filters, requiring adjust-

ment only in a few cases. Then tuning would reduce to adjusting the overall noise

on each mode.

For each mode, pm was set equal to the MSE of Ωm (as estimated by M-TLS-

MPM), normalized by |Ωm|. Similarly, qm was set to the MSE of the M-TLS-MPM

estimate of ωm, divided by ωm. These settings were chosen so that uncertainty in

the estimate would drive uncertainty in the model in a simple, straightforward way.

White, Gaussian, pseudo-random noise was added to the signal ȳ(ti) input to

the filter. The variance of this noise was set so that a desired SNR was achieved. It
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was assumed that some noise was present in the simulated or measured signal prior

to the addition of white noise, but the added noise had a larger variance than any

previously-existing noise. Previously-existing noise would be the result of any minor

errors in the scattering simulation, propagated into the time domain via the IFFT.

Such noise would be band-limited, rather than white, and would not necessarily be

well-modeled as Gaussian. The signal-to-noise ratio was computed with regard to

the added white, Gaussian noise only. The single element of the constant 1-by-1 R

matrix was set equal to the variance of the added noise.

In the initial plan for this research, it was assumed that a parameter estimation

routine would be necessary within each filter to estimate the unknown coefficients

Am and Bm associated with each damped sinusoid term in the signal model. The

planned parameter estimation technique was the Rao Scoring approximation to the

Newton-Raphson solution of the maximum likelihood equations [76]. The tuning

strategy used in the algorithm allowed the states to adapt to the signal, so parameter

estimation was found to be unnecessary, and a significant amount of additional

computation was avoided.

To explain the tuning strategy, consider first a simplified explanation of the

measurement update process of a Kalman filter. The state update equation, Equa-

tion (2.72), is cast in a different form to show clearly that it is a weighted average

of the previous states and the measurements:

ˆ̄x(t+i ) = [I − K(ti)H(ti)]ˆ̄x(t−i ) + K(ti)ȳ(ti) (4.37)

At measurement update, the filter updates the estimated state vector with a weighted

average of the state immediately prior to update, and the current measurement. The

weight in the equation is the Kalman gain K(ti). If the values in the gain matrix

K(ti) are small, the measurement has little effect on the updated value. If the

Kalman gain is larger, the residual is weighed more heavily and the state is changed

significantly after update.
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The goal of the tuning strategy was to force the filter to weigh the measurement

heavily at first, so for a brief initial time the measurement would drive the value of

ˆ̄x(t+i ) regardless of the system’s dynamics. The filter would ‘lock on’ to the incoming

measurement quickly. Because of this tuning choice, the initial residuals were tiny,

preventing the MMAE equation from distinguishing between filters. After the initial

period, the gain decreased significantly, allowing the system dynamics to influence

the filter more heavily, so that filters with incorrect system dynamics models would

be unable to adapt to the incoming measurements, generating larger residuals.

To achieve the appropriate K(ti) values over the time window, two techniques

were considered. One of them was the use of time-varying covariance matrices Qd

and R. This technique was tested, but not used in the final version of the algorithm

because a less complicated approach was available.

A simpler way to achieve the same effect was to use a large initial value for the

state covariance P(t0), along with smaller values of Qd than called for by conservative

filter tuning. Conservative tuning refers here to setting the value of the dynamics

noise strength Q or covariance Qd high enough to force a filter to weigh incoming

measurements heavily, thus making it responsive to changes in system behavior. For

effective target recognition, it was desired that filters with models that did not match

the incoming signal be prevented from adapting to that signal. Over time the state

covariance decreased toward a steady state value. The measurement and system

noise covariances R and Qd were both set to constant values. Each filter adjusted

the values in the state covariance matrix downward from their initial values toward

lower, steady-state values. The Kalman gain exhibited the desired behavior with the

least required computation of the tuning methodologies considered.

When tuning a filter, one criterion that was applied was that the individual

output states should appear to be noise-free in the later part of the time window,

after the initial transient. The output states were those states corresponding to

nonzero elements of the H matrix. Once the filter settled down, it needed to be able
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to reject signals that didn’t match its dynamics model. If an output state appeared

to be affected by noise after the filter’s initial transient period, it was too responsive

to the measurement (i.e., the gain was too high) to reject incorrect dynamics in a

signal adequately. The value of Qm (a parameter on the main diagonal of the Q

matrix) was reduced for the indicated mode until the output state appeared clean.

It was expected that, in a properly-tuned filter for which the model matched the

signal, the size of the quantity r̄T (ti)A
−1(ti)r̄(ti) (the square of the scaled residuals)

would be on the order of the number of elements in the measurement vector. In

this case, with scalar measurements, the squared scaled residuals will be on the

order of one. That is because A is the residual covariance (variance in this scalar-

measurement case), so residuals will be on the order of the standard deviation, C
√

A.

When the inverse of the standard deviation is used to scale the residuals, the result

should be on the order of one.

An additional parameter that was adjusted as part of filter tuning was the set

of units of the frequencies and the sample period. Some filters, typically those with

fewer than five states, ran better with frequency units of Grad/s and GN/s, and

the sample period in ns, but most operated well with units of tens of Grad/s, tens

of GN/s, and tenths of ns. For the synthetic data, units of hundreds of Grad/s,

hundreds of GN/s, and hundredths of ns were used. Changing the units affected the

magnitude of elements of the system dynamics matrix F, which in turn affected the

state transition matrix Φ(∆t) computed from F. Changes in Φ(∆t) affected the rate

of change in the state covariance P(ti) via Equation (4.30). Since P(ti) was used to

compute the Kalman gain K(ti) as seen in Equations (4.32) and (4.33), changes in

units affected the way each filter performed over time.

4.2.2 Filter Tests with Synthetic Data. Some details of the filter’s operation

are explored in this section. In each case, data is shown from a single simulation run

as well as overall results from a set of 100 runs. Including both types of plots allows
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a clear demonstration of the filter’s operation in the presence of noise as well as

an indication that the results obtained were typical, rather than exceptional. Three

experiments were conducted to demonstrate filter effectiveness. The first involved the

filter’s response to a signal that fits the filter’s system model. The second experiment

involves a perturbed signal which still fits the filter’s system model, but has a different

amplitude on one signal mode. The third experiment shows how the filter responds

when the signal does not match the filter’s system model.

Figure 4.2 shows a noisy signal and the filter’s reconstruction of it. The filter’s

Ωm and ωm parameters were estimated using M-TLS-MPM and Synthetic Data

Version 1 with 13 dB SNR. The signal input to the filter had an SNR of 3 dB.

The filter model’s parameters adequately reflected the parameters of the underlying

signal, so the filter performed well despite the presence of significant noise. Figure 4.3

shows the mean, plus or minus one standard deviation, of 100 runs of the signal plus

additive, white, Gaussian noise. The figure also shows the mean, plus or minus one

standard deviation, of the filter’s response. Except for an initial transient period, it

can be seen in Figure 4.3 that the mean of the filter’s reconstruction corresponded

approximately to the mean of the 100 noisy signals. The mean of the reconstruction

also corresponded approximately to the uncorrupted signal. Means are not shown in

the picture for clarity, but the means are sufficiently discernable from the standard

deviation bounds.

As desired, the scaled residuals for this filter appeared to be zero-mean white

noise, with an amplitude on the order of one. The scaled residuals are shown in

Figure 4.4. The mean, plus or minus one standard deviation, of the scaled residuals

is shown in Figure 4.5. Here it can be seen clearly that the residuals were correctly

scaled after an initial transient period. In other words, the filter’s calculation of the

residual variance A(ti) was accurate.

The filter has only a scalar measurement, but must use that limited information

to reconstruct the various modes that make up the data. As seen in Figures 4.6
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Figure 4.2 Synthetic Data Version 1, 3 dB SNR, and Kalman Filter reconstruction
Hˆ̄x
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Figure 4.3 Mean and standard deviation of Synthetic Data Version 1, 3 dB SNR,
and Kalman Filter reconstruction Hˆ̄x
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Figure 4.4 Scaled residuals for Synthetic Data Version 1
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Figure 4.5 Mean and standard deviation of scaled residuals for Synthetic Data
Version 1
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through 4.13, the filter’s output states matched the modes that made up the noise-

free signal. The output states are those elements of the state estimate vector ˆ̄x(ti)

corresponding to a non-zero element in the measurement matrix H. These are states

x̂1(ti), x̂2(ti), x̂4(ti), and x̂6(ti), corresponding to the non-oscillating mode (pole on

the real axis of the s-plane) and three damped sinusoid modes. With poor tuning, the

filter had some difficulty reconstructing the non-oscillating mode, and reconstructed

the three oscillating modes with some phase error in each output state.

Figures 4.6 and 4.7 show the filter’s response to the non-oscillating mode in

Synthetic Data version 1. After the initial transient, the filter’s mode settles at a

point higher than the actual non-oscillating mode, and declines exponentially from

there. Note that the comparison in Figure 4.7 is to a portion of the Version 1 data

which has not been corrupted by noise; the data itself is presented, rather than the

mean and deviation of many runs.

Figures 4.8 and 4.9 show the filter’s response to the lowest-frequency oscillating

mode in the received signal. The filter reconstructs this mode well, although there

is a slightly smaller amplitude and the phase of the reconstructed mode leads the

actual mode.

Figures 4.10 and 4.11 show the filter’s response to the middle-frequency oscil-

lating mode in the received signal. The filter reconstruction follows the signal mode

well, with only a slightly smaller amplitude and a slight phase delay.

Figures 4.12 and 4.13 show the filter’s response to the highest-frequency os-

cillating mode in the received signal. The filter did a good job reconstructing this

mode, although there was a smaller amplitude and a slight phase delay. The slight

reduction in amplitude of the three oscillating modes, combined with the slightly

higher amplitude of the non-oscillating mode, allowed the filter to reconstruct the

total signal properly.
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Figure 4.6 Kalman Filter state x̂1 for Synthetic Data Version 1, and noise-free
mode
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Figure 4.7 Mean and standard deviation of Kalman Filter state x̂1 for Synthetic
Data Version 1, and noise-free mode
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Figure 4.8 Kalman Filter state x̂2 for Synthetic Data Version 1, and noise-free
mode
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Figure 4.9 Mean and standard deviation of Kalman Filter state x̂2 for Synthetic
Data Version 1, and noise-free mode
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Figure 4.10 Kalman Filter state x̂4 for Synthetic Data Version 1, and noise-free
mode
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Figure 4.11 Mean and standard deviation of Kalman Filter state x̂4 for Synthetic
Data Version 1, and noise-free mode
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Figure 4.12 Kalman Filter state x̂6 for Synthetic Data Version 1, and noise-free
mode
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Figure 4.13 Mean and standard deviation of Kalman Filter state x̂6 for Synthetic
Data Version 1, and noise-free mode

4-29



In the second experiment, the filter’s response to a modified signal was consid-

ered. The coefficients associated with each mode change along with the aspect from

which the target is viewed. It is therefore useful to consider the filter’s reaction to a

weak mode. The same Synthetic Data Version 1 used previously was modified; the

coefficient of the third mode (estimated by states x̂4 and x̂5, output state x̂4) multi-

plied by 0.01 to suppress it without actually eliminating the mode. The results are

shown in Figures 4.14 through 4.25. In this experiment, the filter reacted properly

to the near-absence of the weak mode. The filter was able to reconstruct the three

non-suppressed modes adequately.

Figures 4.14 and 4.15 show the filter’s reconstruction of the signal with the

third mode (middle oscillating mode) suppressed. The signal input to the filter

had an SNR of 3 dB, as in the previous experiment. The frequency and damping

parameters of the signal and filter are the same as in the previous experiment.

As was seen in the previous experiment, the scaled residuals for this filter

appeared to be zero-mean white noise, with an amplitude on the order of one. The

scaled residuals are shown in Figure 4.16. The mean, plus or minus one standard

deviation, of the scaled residuals is shown in Figure 4.17. The figure shows that the

scaled residuals had a standard deviation of approximately one, as desired and as

seen in the first experiment.

Figures 4.18 and 4.19 show the filter’s response to the non-oscillating mode in

Synthetic Data version 1. After the initial transient, the filter’s mode approaches

the signal’s non-oscillating mode closely, and declines exponentially from there at

the appropriate rate, following the signal’s mode. This mode responds better in this

experiment than it did in the previous one.

Figures 4.20 and 4.21 show the filter’s response to the lowest-frequency oscil-

lating mode in the received signal. The filter reconstructs this mode well, although

there is a slightly smaller amplitude and the phase of the reconstructed mode leads

the actual mode.
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Figure 4.14 Synthetic Data Version 1, 3 dB SNR, and Kalman Filter reconstruction
Hˆ̄x, third mode suppressed
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Figure 4.15 Mean and standard deviation of Synthetic Data Version 1, 3 dB SNR,
and Kalman Filter reconstruction Hˆ̄x, third mode suppressed
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Figure 4.16 Scaled residuals for Synthetic Data Version 1, 3 dB SNR, third mode
suppressed
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Figure 4.17 Mean and standard deviation of Scaled residuals for Synthetic Data
Version 1, 3 dB SNR, third mode suppressed
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Figure 4.18 Kalman Filter state x̂1 for Synthetic Data Version 1, and noise-free
mode, third mode suppressed
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Figure 4.19 Mean and standard deviation of Kalman Filter state x̂1 for Synthetic
Data Version 1, and noise-free mode, third mode suppressed
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Figure 4.20 Kalman Filter state x̂2 for Synthetic Data Version 1, and noise-free
mode, third mode suppressed
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Figure 4.21 Mean and standard deviation of Kalman Filter state x̂2 for Synthetic
Data Version 1, and noise-free mode, third mode suppressed
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Figures 4.22 and 4.23 show the filter’s response to the suppressed middle-

frequency oscillating mode. After the very large initial transient, this filter mode

assumes a small amplitude to match the signal mode. Because the signal mode’s

amplitude is so small, it is well below a single standard deviation of the filter’s

mode.

Figures 4.24 and 4.25 show the filter’s response to the highest-frequency oscil-

lating mode in the received signal. The filter’s mode has the same amplitude as the

signal’s mode, and there is only a slight phase delay.

In Figures 4.2 through 4.25, it can be seen that a properly tuned filter with the

right signal parameters can estimate a signal very well. Another key consideration

for target recognition is how well a filter reacts to the wrong signal, i.e., a signal

not matching the filter’s assumed parameters. The desire is that the filter will react

poorly. In the third experiment, we consider a filter’s response to the wrong signal.

Figures 4.28 through 4.37 show results from a filter reacting to a signal it was

not designed to match. The filter was based on estimated poles from Synthetic Data

Version 1 at 13 dB SNR. The signal received was Version 2. As in the first two

experiments, the SNR of the signal was 3 dB. The signal and the filter were each

based on one non-oscillating and three damped sinusoid modes, but the frequencies

were different. The frequencies for Versions 1 and 2 are given in Table 3.1.

Figures 4.26 and 4.27 show the filter’s reconstruction of the signal. In Fig-

ure 4.26 some mismatch between the dashed line (the filter) and the noisy solid line

(the signal) can be seen in the left side of the graph, between 0.2 and 0.6 nanoseconds.

Figure 4.27 shows somewhat more clearly that the mean of the filter’s reconstruction

does not follow the mean of the signal.

It is expected that the scaled residual plot will stay mostly between the am-

plitude limits of 1 and -1, if the underlying model’s assumptions were correct. The

scaled residuals from the Version 1 filter reacting to the Version 2 signal are shown
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Figure 4.22 Kalman Filter state x̂4 for Synthetic Data Version 1, and noise-free
mode, third mode (this mode) suppressed
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Figure 4.23 Mean and standard deviation of Kalman Filter state x̂4 for Synthetic
Data Version 1, and noise-free mode, third mode (this mode) suppressed
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Figure 4.24 Kalman Filter state x̂6 for Synthetic Data Version 1, and noise-free
mode, third mode suppressed
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Figure 4.25 Mean and standard deviation of Kalman Filter state x̂6 for Synthetic
Data Version 1, and noise-free mode, third mode suppressed
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Figure 4.26 Synthetic Data Version 2, 3 dB SNR, and Kalman Filter reconstruction
Hˆ̄x, filter based on Version 1 frequencies
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Figure 4.27 Mean and standard deviation of Synthetic Data Version 2, 3 dB SNR,
and Kalman Filter reconstruction Hˆ̄x, filter based on Version 1 frequencies
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in Figure 4.28. The residuals in this case are a bit larger than unity, and some dy-

namics are apparent in the left side of the graph, between 0.1 and 0.8 nanoseconds.

In a well-matched filter, the scaled residuals should take on the appearance of white

Gaussian noise because most or all traces of the signal have been subtracted out.

The mean of the residuals, plus or minus one standard deviation, is shown in

Figure 4.29. Unlike the previous two experiments, the scaled residuals for this filter

contained significant dynamics, indicating that the filter did not account for the

signal’s dynamics. After one nanosecond, the residuals sustain a standard deviation

of approximately one, but that is only due to the fading signal strength. After one

nanosecond, there is not much left in the noise-corrupted signal except noise.

Here it is seen that a Kalman filter that is matched to a signal different from

the received signal will generate scaled residuals that are large and non-white (non-

constant power spectral density), where it was seen earlier that a filter matched to

the received signal will produce residuals that are white. The ability to distinguish

filters that match the signal poorly from those that match the signal well is the basis

of the target recognition process.

Figures 4.30 through 4.37 show the performance of individual filter modes

compared to the modes that made up the noise-free signal. In each figure, the

filter’s modes had significant error relative to the modes in the underlying signal.

Both phase and amplitude errors are pronounced in each oscillating case.

Figures 4.30 and 4.31 show the filter’s response to the non-oscillating mode in

Synthetic Data version 1. This mode experiences a longer initial transient than was

present in earlier experiments. After the initial transient, the filter’s mode is too

high in amplitude and declines at a different rate from the signal’s mode.

Figures 4.32 and 4.33 show the filter’s response to the lowest-frequency oscillat-

ing mode in the received signal. The filter ’s mode never matches the signal’s mode.

The filter has the wrong amplitude, the wrong frequency, and the wrong phase.
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Figure 4.28 Scaled residuals for Synthetic Data Version 2, 3 dB SNR, filter based
on Version 1 frequencies
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Figure 4.29 Mean and standard deviation of Scaled residuals for Synthetic Data
Version 2, 3 dB SNR, filter based on Version 1 frequencies
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Figure 4.30 Kalman Filter state x̂1 for Synthetic Data Version 2, and noise-free
mode, filter based on Version 1 frequencies
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Figure 4.31 Mean and standard deviation of Kalman Filter state x̂1 for Synthetic
Data Version 2, and noise-free mode, filter based on Version 1 frequencies
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Figure 4.32 Kalman Filter state x̂2 for Synthetic Data Version 2, and noise-free
mode, filter based on Version 1 frequencies
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Figure 4.33 Mean and standard deviation of Kalman Filter state x̂2 for Synthetic
Data Version 2, and noise-free mode, filter based on Version 1 frequencies

4-42



0 0.2 0.4 0.6 0.8 1 1.2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time, nanoseconds

S
ta

te
 4

, m
ill

iv
ol

ts
/m

et
er

estimate
actual state

Figure 4.34 Kalman Filter state x̂4 for Synthetic Data Version 2, and noise-free
mode, filter based on Version 1 frequencies
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Figure 4.35 Mean and standard deviation of Kalman Filter state x̂4 for Synthetic
Data Version 2, and noise-free mode, filter based on Version 1 frequencies
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Figure 4.36 Kalman Filter state x̂6 for Synthetic Data Version 2, and noise-free
mode, filter based on Version 1 frequencies
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Figure 4.37 Mean and standard deviation of Kalman Filter state x̂6 for Synthetic
Data Version 2, and noise-free mode, filter based on Version 1 frequencies
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Figures 4.34 and 4.35 show the filter’s response to the middle-frequency oscil-

lating mode. The filter’s mode has an amplitude similar to the signal’s mode, but

the frequency and phase are off, so the match is poor.

Figures 4.36 and 4.37 show the filter’s response to the highest-frequency oscil-

lating mode in the received signal. The filter’s mode has a much smaller amplitude

than the signal’s mode, and the frequency and phase are off. The filter’s mode is

unable to match the signal’s mode.

Kalman filters built with frequencies estimated from synthetic data are capable

of estimating the matched signal in the presence of noise. They are also capable of

rejecting an unmatched signal, resulting in large scaled residuals. Thus, properly

tuned Kalman filters are useful building blocks in a target recognition algorithm

based on an MMAE architecture.

4.3 Applying Multiple Model Adaptive Estimation

The Multiple Model Adaptive Estimation (MMAE) algorithm is the key to

the target recognition algorithm. MMAE is frequently used to estimate the value

of one or more unknown parameters in a linear system model. Here MMAE is not

used to estimate individual parameters, but instead to select which set of fixed,

known parameters best fits the target, given a library of sets of parameters. The

maximum a posteriori (MAP) version of MMAE [76] is implemented, which selects

the system model within a single filter as the one most representative of the system

being modeled. That is in contrast to the standard or Bayesian blended version

of MMAE, which generates a single state estimate based on a probability-weighted

average of the state estimates generated by each elemental filter.

The hypothesis conditional probability (HCP) computation routine within the

MMAE process determines which model does the best job of estimating the values of

the true state variables. The filter with the highest HCP is the one considered closest

to the true system in the sense of the prediction distance defined by Baram [5]. In
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fact, each filter’s state estimate ˆ̄x(ti) is only used within the filter that generates

it. The target recognition decision uses the HCP p(ti) of each filter, but does not

directly use the associated state estimate.

Filter covariances were tuned for best target recognition performance, rather

than for the best state estimation. This involved modifying dynamics driving noise

covariance in the filters to improve parameter estimation [89]. It also involved chang-

ing the size of initial values in the covariance matrix.

As seen in Equations (2.75) through (2.78), the HCP at each sample point was

weighted by the HCP of the previous sample point. If the HCP of any one filter ever

was reduced to zero, it would be weighted by zero on each succeeding update, and

the filter could never be declared correct. It was possible for the probability of any

single filter, even one with the correct dynamics model, to go to zero early in the

algorithm’s operation.

To force the MMAE system to be more responsive to new inputs, a minimum

probability of L = 0.01 was imposed on each filter [76,79]. Mathematically, since the

filters represent mutually-exclusive possibilities (one filter is assumed correct and all

others must logically be incorrect), the probabilities associated with all of the filters

must sum to one. After the lower bound was imposed, the HCP of each filter was

rescaled by dividing by the sum of HCP values, to ensure that all the HCP values

would sum to one. Increasing L forced the algorithm to be more sensitive over

the entire time window. Setting L = 0 would result in an unmodified algorithm.

Minimum probabilities are usually used in MMAE systems to keep the system alert

to changing parameter values. In this problem, parameter values did not change,

but it was desirable to prevent the algorithm from excluding information from any

one filter prior to each filter reaching steady state operation. A lower bound of 0.001

has been used in some failure detection and identification systems [79, 84]. These

were flight control systems which would operate over several minutes of flight time,

with excitation provided by control inputs during the period of operation. In this
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research, no control inputs were used, and the late-time signal decayed rapidly. Thus,

a higher value (L = 0.01) was used for the lower bound. It was desired to allow each

filter to recover more rapidly from a very low probability that might be assigned

prior to filter convergence to a good parameter estimate.

To evaluate the noise resistance of the target recognition algorithm, target sig-

natures were developed to represent the Synthetic Data Versions 1 through 4. Several

test data sets were created by adding Gaussian noise to the clean Synthetic Data.

The noisy data was analyzed using the M-TLS-MPM described in Section 3.2. Four

iterations of the LRHA were used because four iterations produced a reduction in the

MSE of parameter estimates compared to the three-iteration case in Section 3.2.1,

while the additional reduction in MSE for a fifth iteration was insignificant. The

power of the added noise was set so that the signal-to-noise ratio (SNR) varied from

-15 to 25 dB. The significance level P was set to its prescribed value, P =SNR/20,

rounded up to the next tenth. There were 100 noisy samples used at each SNR level.

Target filters were built for all four versions of Synthetic Data described in

Section 3.3.1. The parameters Ωm and ωm used to build the filters were estimated

from noisy synthetic data at various SNR settings, using the M-TLS-MPM algorithm

with four iterations of the LRHA. The filters were built using the parameter estimates

and MSE results found using signals with 25 dB SNR and the same signals with 13

dB SNR. The filters based on 25 dB SNR data were tuned differently from the filters

for which the pole estimates were based on 13 dB data. The results, in terms of

percent correct identification, are shown in Figures 4.38 and 4.39.

Figure 4.38 shows the results found with filters developed from 25 dB SNR

data. The effectiveness of the algorithm varied as different input signals were used.

For Version 2, the correct answer was found in 90% of cases when the SNR was -7

dB or higher, while for Version 3, the correct answer was found in 90% of attempts

when the SNR was -15 dB or above.
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Figure 4.38 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Synthetic
Data Versions 1,2,3, & 4 estimated from 25 dB data
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Figure 4.39 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Synthetic
Data Versions 1,2,3, & 4 estimated from 13 dB data
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Figure 4.39 shows the results found with filters developed from 13 dB SNR

data. The results were similar to the 25 dB case in that the percent of correct

identifications was high when the SNR was above approximately -7 dB. For Version

1, the correct answer was found in 90% of attempts at all SNR levels examined.

For synthetic data, the algorithm is capable of associating the correct filter with

the signal, even when the SNR of the signal is -7 dB. In Section 4.4, the technique

is evaluated with simulated radar data.

4.3.1 Selecting a Target. To distinguish between filter models, the algo-

rithm needs a single ‘goodness of fit’ indication from each one. All the data available

from the filter must be distilled down to a single measure of effectiveness which

supports a decision. The HCP of the correct filter is such a criterion. However, as

the signal fades, the algorithm may be less able to distinguish between filters. As

the signal strength fades, the term Hkx̄k(ti) in the filter residual equation becomes

smaller in magnitude, and the residual in each filter becomes nearly equal to the

measurement. Each filter will then have the same residual. Since the term r̄T
k A−1

k r̄k

for filter k is the same as for all other filters, the HCP of each filter will be deter-

mined primarily by the coefficient βk, first shown in Equation (2.76) and defined

in Equation (2.77). This problem is known as ‘beta dominance’ [84, 136]. While

the signal is still strong, the HCP will be determined by the square of the scaled

residuals, r̄T
k A−1

k r̄k.

To solve that problem, at least three approaches are possible: changing the

equation for the HCP, forming a weighted average of the HCP over time, and termi-

nating the MMAE-MAP algorithm when each filter’s residual covariance has reached

its steady-state value. The equation for the conditional probability density may be

modified in an ad hoc way that reduces its dependence on the residual covariance

A(ti). The leading coefficient βk shown in Equation (2.76) may be set equal to

one [79,84] so that the computation is less sensitive to variations in residual covari-
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ance from filter to filter. The modified conditional density function will take this

form:

fȳ(ti)|ā,Ȳ (ti−1)(ȳi | āk, Ȳi−1) = exp{−1

2
r̄T
k (ti)A

−1
k (ti)r̄k(ti)} (4.38)

The conditional density function, when modified in this way, no longer meets the

mathematical definition of a probability density in that its integral is no longer equal

to one. However, the sum of all filters’ HCP values is one. This approach was found

to improve the algorithm’s performance in some cases discussed below. There was

no additional computational burden.

Results of the modified algorithm in which βk is set equal to one for each filter k

are shown in Figure 4.40. This figure corresponds to the previous Figure 4.39, which

shows the results of the unmodified algorithm. The modified algorithm’s performance

is slightly worse than that of the unmodified algorithm. In the unmodified case, each

target is correctly identified in at least 90% of attempts when the SNR is greater

than -5 dB. The modified algorithm requires -2 dB SNR to achieve the same results

for all four signals.

Another approach that was considered was to form a weighted time-average

of the HCP of each filter. For an appropriately-selected weight function, the period

of time during which the algorithm had the best opportunity to perform properly

could be emphasized. This technique provided accurate target recognition for a small

increase in required computations [102,103].

A third approach, which was chosen for the final version of the algorithm,

was to terminate the target recognition algorithm once it was most likely to have

reached a successful conclusion, yet before the signal strength faded. To determine

the appropriate stopping criterion, the filter covariances were considered. Given

the tuning employed, each filter’s residual covariance started at a high value and

quickly fell toward a steady state. At the time each filter reached steady state, the

dynamics within each incorrect filter were forcing increases in the residuals, while the
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Figure 4.40 MMAE-MAP with βk = 1, Percent Correct ID vs SNR (dB), Signa-
tures: Synthetic Data Versions 1,2,3, & 4 estimated from 13 dB data

correct filter’s residuals remained small. That allowed the MMAE-MAP algorithm

to distinguish between filters with the best chance of a successful decision.

At each update, the target recognition algorithm compared the residual covari-

ance of each filter to its value at the previous update. A ratio of the current to the

previous covariance was formed. If the ratio for each filter was nearly one within a

tolerance, and remained that way for a number of turns, the filter was considered

to have reached steady state. The tolerance was 0.001, so residual covariance ratios

between 0.999 and 1.001 indicated filter convergence if they persisted in this range

for ten sample periods. When all filters were determined to be at steady state, the

algorithm was terminated and a decision was declared.

This technique added some computation to each measurement update of the

MMAE-MAP algorithm. It was intended to reduce computations overall by termi-

nating the algorithm before the end of the data set was reached. In fact, it frequently

did not save any computations. Because filters achieved steady state operation at
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different times, the best possible result was to terminate after the longest-settling fil-

ter had settled. If that was within ten sample periods of the end of the data window,

no savings were realized.

The reduction in computation due to the early-stopping technique depends

on the length (number of sample periods) of the signal to be tested, as well as the

tolerance used to declare filter convergence. It also depends on the number of sam-

ple periods the algorithm is continued after filter convergence is achieved. Relaxing

the tolerance or reducing the number of sample periods after convergence results

in a faster decision and computational savings, but may also result in declaring a

decision before the algorithm has been driven to the right answer by differences in

the residuals or the elemental filters. Future research will identify optimal settings

for the tolerance and number of samples after steady-state to allow the best tar-

get identification performance, with a secondary objective of reducing computations

slightly.

In this research, data sets of fixed length were input to the algorithm. In

field operation, the length of the input signal will be determined by operational

parameters including the distance separating the target of interest from other targets,

and the SNR. The early-stopping technique will reduce computation in those cases

in which long signals are available.

4.3.2 Confusion Matrices. When talking about sensors, engineers fre-

quently use terms such as probability of detection and probability of false alarm.

Since target detection is assumed in this research, these probabilities are not used.

100% detections and 0% false alarms were assumed before the target recognition

algorithm was brought into use. A different measure of effectiveness is needed, one

appropriate to a target recognition system rather than a target detection system. An

example is a confusion matrix, sometimes termed a discrimination event matrix [2].
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A confusion matrix is a way to display the results of several runs of a target

recognition system. The matrix shows the fraction of attempts in which a recognition

system (or ‘classifier’ [2]) declared a correct or incorrect target designation, based

on the actual target identity. Ideally, the values in the main diagonal of the matrix

are all equal to one, and values off the main diagonal are zero. Thus, a perfect

confusion matrix (showing no confusion) is an identity matrix. A confusion matrix

is a valuable tool to see where a classifier succeeds and fails. It takes into account

much more information than the percentage of correct identifications, and can show

biases toward or away from any one target type [2].

To fill in the elements of the matrix, several experiments were performed using

late-time signals from the targets indicated in the left column. Each experiment

resulted in one target type being declared. To produce this table, the final HCP of

each filter was not retained. The only data used was which filter received the highest

HCP at the time of target declaration. Confusion matrices ordinarily take into

account either numbers or averages of discrete events such as target declarations [2].

A possible variant of a confusion matrix could show the time-average of the HCP

for each target over an interval following target declaration. Such a matrix would

require different analysis than a standard confusion matrix, since each target type

would have a non-zero HCP, indicating confusion even when the correct target was

declared. To simplify analysis, standard confusion matrices were used. Variants of

the confusion matrix may be useful tools for future research into target recognition.

An example matrix for Synthetic Data is shown in Table 4.3. It is based on

the same data used to generate Figure 4.39. The results were generated with the

SNR of the measured signal set to -9 dB. Above -9 dB, results were so good that a

confusion matrix would have little diagnostic value. From +11 to +15 dB SNR, the

confusion matrix was an identity matrix.

In this case, when erroneous declarations were made, the filter for the Version 1

signal tended to be declared correct. It is possible that additional tuning could result
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Correct Declared Declared Declared Declared
Target Version 1 Version 2 Version 3 Version 4

Version 1 0.96 0.03 0.01 0.00
Version 2 0.23 0.69 0.08 0.00
Version 3 0.14 0.01 0.84 0.01
Version 4 0.17 0.02 0.03 0.78

Table 4.3 Confusion matrix, synthetic data, SNR = -9 dB

in less bias toward the Version 1 filter at lower SNR, but different tuning also has

the potential to reduce the effectiveness of the algorithm at higher SNR, as will be

discussed in Section 4.4. If this kind of confusion occurred at a higher SNR level, it

would be viewed as a problem and a correction would be attempted through tuning.

In this case, the algorithm achieved good results for -7 dB SNR, much better than

the E-Pulse technique using the same data, as discussed in Section 4.5.

A possible source of the bias was beta dominance [79], discussed previously.

For this data, the same test was run with the HCP equation modified as shown in

Equation (4.38). The results were identical to those found with the algorithm that

computed HCP via Equation (2.76). This indicated that the source of the bias was

not beta dominance.

A confusion matrix is very useful for diagnosing failures when they are signif-

icant. Examples of confusion matrices are shown in Section 4.4 for tests involving

simulated radar data.

4.3.3 Verifying Target Identification via Chi-Squared Test. Since the goal

of this research was accurate target recognition, it was useful to consider measures

for how well the recognition performed. In operational use, the ‘ground truth’ or

actual nature of the target is unknown. In that case, some measure of confidence is

desired, which will allow the user of this algorithm to know how much trust to place

in the result.
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The χ2-test involves comparing a test statistic to a threshold. If the test

statistic is less than the specified threshold, the hypothesis is shown to be supported

by the data, and accepted as true [101]. The test statistic qk for filter k is developed

using the current residual and the previous N − 1 residuals. It is given by:

qk =
i

∑

j=i−N+1

r̄T
k (tj)A

−1
k (tj)r̄k(tj) (4.39)

in which N is the length of the data sequence used to test for confidence. This

variable has a χ2 distribution with N degrees of freedom [44]. The probability

distribution function of a χ2 variable is given by [104]:

χ2(N) = f(x) =
x(N/2)−1

2N/2Γ(N/2)
exp(−x/2)u(x) (4.40)

Here the test was used on the residuals from the best matching filter, to verify

that the residuals were actually well-described by the probability density function

(PDF) they were assumed to fit. Individual filter scaled residual measurements

were assumed to be normally distributed. Each filter’s PDF, used in the HCP

computation, was chosen to be normal. To review, the HCP was computed by:

pk(ti) =
fȳ(ti)|ā,Ȳ (ti−1)(ȳi | āk, Ȳi−1)pk(ti−1)

K
∑

j=1

fȳ(ti)|ā,Ȳ (ti−1)(ȳi | āj, Ȳi−1)pj(ti−1)

(4.41)

The significance of the test was set to 0.05 and the residuals from the last 15

sample periods were used. Given these settings, the probability was 0.95 that the

sum of squared scaled residuals computed via Equation (4.39) would be equal to or

less than 24.9958. In practice, for a significance of 0.05, the χ2 test should indicate a

failure in approximately 5% of trials when the correct filter model is declared. Thus,

a single failure of the χ2 test should not be interpreted as a definitive indication that

the best-matching filter was a poor match to the target. Instead, a failure should
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indicate that the target recognition attempt was inconclusive and the test should be

applied again.

When the target model accurately depicts the signal’s behavior, the residuals

are white, Gaussian, zero-mean variables with covariance equal to the filter-computed

covariance A(ti) [77]. When the signal strength is low, such as during the later por-

tion of the time window when SNR is low, the residuals of a filter may be dominated

by white, Gaussian noise whether or not the filter is based on the correct model of

the signal. In either case, the sum qk described in Equation (4.39) may have been

well-described by a χ2 distribution. Thus, χ2 failures occurred approximately 5%

of the time for low-SNR trials, regardless of which filter was declared. That result

indicates that the value of the χ2 test diminishes as SNR is reduced.

Results of the χ2 test were recorded. For the synthetic data tests discussed

previously, the rate of failures ranged from 0% to 7% for all tested combinations of

SNR and correct target, whether or not the correct target was declared.

Figure 4.41 shows the results of the χ2 test in terms of the number of failures

when the indicated target was the correct answer. The declared filter’s residuals

failed the test in approximately 5% of attempts. There was no obvious trend toward

more or fewer failures as SNR varied. Results involving simulated radar data are

discussed in Section 4.4.

An alternative approach to the χ2 test involved distance in parameter space.

To implement it would require a measure of the distance in parameter space from

one model to another. The parameter space discussed here is an N -dimensional

vector space in which each pole is a pair of parameters occupying its own dimension.

Unfortunately, each model k may have a different number Nk of poles, leading to

incomparably different parameter spaces. In addition, if two models have the same

number of poles, there is no rationale to say that the first pole pair in the signature

of Target A occupies the same dimension of parameter space as the first pole pair of

Target B. Thus, a parameter-space approach was not implemented.
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Figure 4.41 Percent of failures of χ2 test, filters based on synthetic data with 13dB
SNR

4.4 Target Recognition Using Radar Data

In target detection and recognition studies, it is useful to separate training data

from test data. The target recognition system was built using a set of parameters

estimated from various measurements via M-TLS-MPM. The signals used to test the

target recognition algorithm were taken from the same data sets used to estimate

the target poles. However, they were not used in the pole combination algorithm

described in Section 3.4 that determined the signatures to be used in the filter. The

test signals thus had no effect on the determination of the frequencies used in each

filter.

The algorithm was tested with four component filters, each based on the poles

estimated from simulated radar scattering data. Figures 4.42 to 4.45 show the output

of the component filters in the target recognition algorithm. The solid line is the

signal received by the filter, while the dashed line is the reconstructed signal Hˆ̄x(ti).
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Figure 4.42 Output of Filter 1 with signal model for simulated 1” × 1” × 2” block
target; measurement (solid), reconstruction (dashed) and 1-σ bounds (dash-dot)
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Figure 4.43 Output of Filter 2 with signal model for simulated 1” × 2” × 3” block
target; measurement (solid), reconstruction (dashed) and 1-σ bounds (dash-dot)
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Figure 4.44 Output of Filter 3 with signal model for simulated 1.1” × 1.9” × 2.8”
block target; measurement (solid), reconstruction (dashed) and 1-σ bounds (dash-
dot)
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Figure 4.45 Output of Filter 4 with signal model for simulated 4.5” square plate
target; measurement (solid), reconstruction (dashed) and 1-σ bounds (dash-dot)
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The dotted lines above and below the plot are the one-standard-deviation bounds

around Hˆ̄x(ti). The bounds are computed as

Hˆ̄x(ti) ± C

√

A(ti) (4.42)

where A(ti) is the residual covariance computed by each filter.

Filter 1 was the correct answer, meaning that the system model from which

the filter was developed was based on the poles estimated from the same target that

produced the received signal. The signal was scattered data from a rectangular block

of dimensions 1” by 1” by 2”, known as Block 112. It was simulated using horizontal

polarization with the long dimension of the block oriented 42 degrees away from the

radar. The target is described further in Section B.1. The time window shown in

the plot includes only late-time scattering.

The other filters were based on the poles estimated from simulations of other

block or plate targets. Each one was oriented so that the scattered field’s direction of

propagation was in the z̃− x̃ plane, oriented 42 degrees away from the z̃ axis, with φ

polarization. The targets and their orientations are described further in Section C.2.

The target for Filter 2, known as Block 123, had dimensions 1” by 2” by 3”. The

target for Filter 3, known as Block 123B, had dimensions only slightly different from

that of Filter 2, 1.1” by 1.9” by 2.8”. The target for Filter 4 was a square plate with

4.5” sides and 0.1” thickness.

The HCP for the correct filter was initially low. Figure 4.46 shows a plot of

the HCP of each filter over time. The values for the four filters are indicated by

different line styles: solid, dashed, dotted, and dash-dot. Because the initial values

of the filter covariance matrices P were set to a high value, each filter weighed

the measurement more heavily than its own system model. Residuals were low

and the residual covariance matrix A was initially large, so the scaled residuals

C

√

A−1(ti) ]T r̄(ti) were small. With small residuals, the MMAE algorithm did not

identify the correct filter in the early part of the time window, but that was not a
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Figure 4.46 HCP of Filter 1 (correct answer, solid line), Filter 2 (dashed), Filter
3 (dotted), Filter 4 (dash-dot). Correct filter has highest HCP at filter equilibrium.

problem. What mattered was the later part of the time window, as the filters neared

steady-state operation, and the residuals became distinct. In Figure 4.46, after four

nanoseconds, the correctly matched filter clearly and consistently had the highest

HCP.

Noise was added to the signals to test the algorithm’s ability to operate ef-

fectively in the presence of noise. The noise was generated by a Gaussian pseudo-

random number generator, with the result multiplied by the desired noise standard

deviation. Since a pseudo-random signal is in fact deterministic, it is repeatable.

The same noise signal could be added to different signals, or the same noise repeated

in subsequent tests. One hundred samples of noise were used in this test. One sam-

ple was added to the radar signal for each test run. The variance of the noise was

adjusted to achieve the desired SNR. The radar signals associated with each of the

filters were tested.
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Signals from the four simulated targets (Block 112, Block 123, Block 123B,

and the 4.5” square plate) were used to test the effectiveness of the algorithm in the

presence of varying amounts of noise. Noise was added so that the SNR ranged from

15 dB to -13 dB. Signals corresponding to each of the four filters were used at each

SNR level. Each signal was repeated 100 times with different noise samples. The

number of times each filter correctly recognized its associated signal at each SNR

level is shown in Figure 4.47. The filters for which results are shown in Figure 4.47

were generated based on φ-polarized data. The signals used to test the algorithm

were also φ-polarized.
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Figure 4.47 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Simulated
blocks and plate, φ-pol

As seen in Figure 4.47, the target recognition algorithm was able to distinguish

between targets, even in the presence of significant noise. Using a signal scattered

from Block 123 (the dashed line), the algorithm achieved a 90% success rate when

the SNR was approximately 4 dB or higher. For the other targets, a 90% success rate

was achieved with much lower SNR levels: approximately 0 dB for Block 123B and -4
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dB for Block 112. For the square plate, a high level of success was achieved regardless

of the SNR. As noted in Section 3.5, reconstructing scattered signals using the Block

123 signature resulted in high reconstruction error, indicating that improvements to

the signature were desirable. With a better signature, it is likely that the residuals

from the Block 123 filter will be smaller and the MMAE algorithm’s recognition

performance for that target will improve.

The algorithm was tested again with filters representing the same four tar-

gets (Block 112, Block 123, Block 123B, and the 4.5” square plate), but built with

frequencies estimated from θ-polarization. While the poles found for the cube and

block targets in Section 3.5 did not match those published in the literature, some

poles were found and signal reconstruction was good for both the cube and Block

112, so the poles were used to test the target recognition technique. The number of

times each filter correctly recognized its associated signal at each SNR level is shown

in Figure 4.48. The test signals were θ-polarized. When these target signatures

were developed, higher reconstruction errors were found for the θ-polarized case, so

it was expected that the target recognition algorithm would have greater difficulty

matching the signals correctly. The SNR again ranged from 15 dB to -13 dB.

In this test the algorithm failed to declare the Block 123 target at high SNR.

As noted previously, the signature for Block 123 led to poor reconstruction error, and

may need more development. Short of redefining the target’s signature, the MMAE

result for Block 123 may be addressed with change in filter tuning. The problem is

examined further with the use of confusion matrices as introduced in Section 4.3.2.

As indicated by Miller [89], tuning a filter for proper operation in isolation from

other filters does not guarantee its successful operation in the context of an MMAE

system. It is likely that tuning of individual filters was too conservative, and a

change of values in the Qd matrix of the poorly performing filters was required. An

additional experiment with the same filters but different tuning is presented later in

this section.
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Figure 4.48 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Simulated
blocks and plate, θ-pol

Table 4.4 shows an example of a confusion matrix for the targets shown in

Figure 4.48. In this case, the filters were developed from θ-polarized scattering data.

The SNR was -3 dB. The test signals used were also θ-polarized. Significant confusion

did occur at -3 dB SNR between Block 123 and Block 123B.

Another confusion matrix is shown in Table 4.5. The data was taken with the

SNR set to 3 dB, which is the point at which the algorithm performed the best.

Correct Declared Declared Declared Declared
Target Bk 112 Bk 123 Bk 123B Sq Plt

Block 112 0.48 0.04 0.01 0.47
Block 123 0.04 0.31 0.01 0.64

Block 123B 0.32 0.32 0.09 0.27
Square Plate 0.02 0.02 0.01 0.95

Table 4.4 Confusion matrix, simulated radar data, SNR = -3 dB, θ-Polarized
Signals
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Correct Declared Declared Declared Declared
Target Bk 112 Bk 123 Bk 123B Sq Plt

Block 112 0.95 0.01 0.02 0.02
Block 123 0.15 0.81 0.01 0.03

Block 123B 0.23 0.21 0.47 0.09
Square Plate 0.01 0.01 0.00 0.98

Table 4.5 Confusion matrix, simulated radar data, SNR = +3 dB, θ-Polarized
Signals

Correct Declared Declared Declared Declared
Target Bk 112 Bk 123 Bk 123B Sq Plt

Block 112 0.99 0.00 0.01 0.00
Block 123 0.47 0.24 0.26 0.03

Block 123B 0.03 0.00 0.97 0.00
Square Plate 0.00 0.00 0.00 1.00

Table 4.6 Confusion matrix, simulated radar data, SNR = 11 dB, θ-Polarized
Signals

Although less confusion is evident at this SNR, Block 123B was still erroneously

declared more often than it was correctly declared.

An interesting problem occurred with the θ-polarized data for the blocks and

plate. The Block 123 target (dimensions 1” by 2” by 3”) was erroneously declared

to be Block 112 (dimensions 1” by 1” by 2”) at high SNR levels, although it was

declared correctly more often at lower levels, as shown in Figure 4.48. The confu-

sion matrix for the target recognition results at 11 dB SNR was examined to help

understand where problems occurred. The matrix is shown in Table 4.6. At this

SNR level, the algorithm correctly identified the square plate as well as Blocks 112

and 123B (dimensions 1.1” by 1.9” by 2.8”). The signal from Block 123 was improp-

erly associated with Block 112 more often than Block 123B. This problem can likely

be solved through either retuning the filter for Block 123 or revisiting the target

signature developed via M-TLS-MPM and the pole combination algorithm.

While Block 123B was confused with Block 123, both Blocks 123 and 123B

were confused with Block 112. The confusion was not due to beta dominance. An
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HCP for each elemental filter was determined using both Equation (2.76) and Equa-

tion (4.38). The first equation allows beta dominance to occur, while the second

equation eliminates it. The same target was declared regardless of the equation used

to compute each HCP.

The test was repeated with different filter tuning, and the results are shown

in Figure 4.49. The new tuning consisted of adjustments to the values on the main

diagonal of the Q matrix, which were then used to compute the Qd matrix. There

was significant confusion between Block 123B and Block 112 as well as between Block

123B and Block 123, as can be seen in Table 4.6. This experiment’s results were

better overall than the previous one involving these targets, detailed in Figure 4.48

and Table 4.4, but the confusion involving Block 123 indicates that further refinement

of both the signature and the filter tuning is necessary. Due to time constraints, such

refinement is left to future research.

Another test involved several body-of-revolution targets, with a θ-polarized

incident field. The targets used were a right circular cylinder with length 5” and

diameter 1”, a right circular cylinder with length 6” and diameter 2”, a combination

of cylinders called a tophat (described in Section C.2 of Appendix C), and a cone of

length 2” and base diameter 2”. The percentage of correct identifications at various

SNR levels is shown in Figure 4.50. The results were good, with better than 90%

correct identifications when the SNR was greater than 1 dB for three target signals

and better than 9 dB for all target signals.

A test was conducted with a different set of body-of-revolution targets using

φ polarization. The targets were the Cone, Cylinder A, Cylinder B, Cylinder C.

Results are shown in Figure 4.51. Except for Cylinder B, the targets required higher

SNR levels to achieve a 90% successful rate of identification than tests with bodies

of revolution using θ polarization. As was discussed in Section 3.5, the φ-polarized

scattered signals from bodies of revolution are weaker than the θ-polarized signals.

Since φ-polarized scattering is weaker, it may be difficult to obtain the higher-SNR
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Figure 4.49 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Simulated
blocks and plate, θ-pol
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Figure 4.50 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Simulated
cylinders and cone, θ-pol
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Figure 4.51 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Simulated
Cone, Cylinder A, Cylinder B, Cylinder C, φ-pol

signals in practice. Further tuning may improve performance, although it may also

be necessary to revisit the signature development for some of these targets.

In another test, block targets were mixed with bodies of revolution. The targets

were the Cube, Combo A, Cone, Cylinder C. Results are shown in Figure 4.52. The

signals were θ-polarized. This experiment produced good recognition results, with

90% or better correct identification when the SNR was above 3 dB. It showed that

the technique is not limited to distinguishing among sets of similar objects.

The χ2 test was used with the Cube, Combo A, Cone, Cylinder C targets, to

see if it was any more useful with simulated radar data than it was with the synthetic

data discussed in Section 4.3.3. Results are shown in Figure 4.53. As before, the

χ2 test was failed in approximately 4% of cases, regardless of SNR and regardless

of whether the algorithm identified the correct target or not. As with the synthetic

data, a χ2 test provided no useful way to determine the confidence that the algorithm

provided the correct answer.
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Figure 4.52 MMAE-MAP, Percent Correct ID vs SNR (dB), Signatures: Simulated
Cube, Combo A, Cone, Cylinder C, θ-pol
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The target recognition algorithm may be modified to employ a technique called

Inter-Residual Distance Feedback (IRDF) [70]. This technique adjusts either filter

tuning or gain online so that the distinguishability of residuals is increased. IRDF

was developed by Lund for continuous-time filters and adapted for discrete-time use

by Miller [89] and Vasquez [136]. IRDF was not employed in this research due to

time constraints, but is a useful area for exploration by future researchers.

The signatures used in this research represented each target only from a single

polarization. In actual operation of this system, it may be necessary to illuminate

each target twice, from two orthogonal polarizations, to excite a sufficient number

of scattering modes so that good target recognition may be achieved.

This research demonstrates that confusion matrices can indicate where filter

retuning may be necessary. They are also a guide for users of the algorithm to

situations in which the results may not be used with confidence.

4.5 Comparison to the E-Pulse

A resonance annihilation (RA) technique was implemented using the Extinc-

tion Pulse (E-Pulse) [112, 113]. The E-Pulse technique was implemented in two

stages, pulse generation and pulse convolution. The pulse was generated with esti-

mated poles sn, n = 1, 2, . . . , N of an object, found via the M-TLS-MPM. A rect-

angular pulse basis function was used because it combined ease of implementation

with noise-suppressing ability superior to that of a delta basis function. The basis

function was defined by

β(t) =







g, (n − 1)T ≤ t ≤ nT

0, otherwise
(4.43)

where g was a weight function used to normalize the pulse.

The Laplace Transform of the basis function was
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βL(s) =
∫ nT

(n−1)T
g exp(−st)dt

= −(g/s)[exp(−snT ) − exp(−s(n − 1)T )]

= g exp(−snT )[exp(−sT ) − 1]/s

(4.44)

A coefficient αm was applied to each basis function. The coefficient vector ᾱ

was determined by
















βL
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(4.45)

in which efL was the Laplace-domain forcing function. The forcing function was

chosen to have the same form as the basis function, with an amplitude of 1.

The length of the basis function T was chosen to meet two sets of constraints.

The first constraint was T = p∆t, p = 1, 2, . . .. This constraint was necessary to

accommodate the E-Pulse technique to data sampled every ∆t seconds. The second

set of constraints was that T 6= kπ/ωn, k = 1, 2, . . ., n = 1, 2, . . . , N . This was

necessary to ensure the β matrix was not singular. The pulse length T was not

constrained to be the same for each target’s E-Pulse.

Figures 4.54 through 4.57 show the E-Pulses generated for the four versions

of Synthetic Data. The poles used were those estimated via M-TLS-MPM from

data with 25 dB SNR. Although the Version 1 E-Pulse shown in Figure 4.54 bears

some superficial resemblance to that shown in Figure 4.55, the convolution results

for those two pulses were very different. The closest similarity in convolution results,

as determined by the Energy Discrimination Number, was between Version 1 and

Version 4, although the E-Pulse shown in Figure 4.57 bears no obvious resemblance
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Figure 4.54 E-Pulse for Synthetic Data Version 1, estimated from 25 dB data
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Figure 4.55 E-Pulse for Synthetic Data Version 2, estimated from 25 dB data
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Figure 4.56 E-Pulse for Synthetic Data Version 3, estimated from 25 dB data
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Figure 4.57 E-Pulse for Synthetic Data Version 4, estimated from 25 dB data
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to that in Figure 4.54. Given the similarity in EDN, confusion between these two

targets can be expected.

Figures 4.58 through 4.61 show the results of convolving the E-Pulse from

each version of Synthetic Data with a noisy signal representing Version 1. The

eight Version 1 signals each had different mode coefficients, as shown in Table 3.3.

These are shown to indicate the nature of the results from the E-Pulse technique.

The vertical lines shown in Figures 4.58 through 4.61 are the limits after which the

convolved signal should go to zero if the pulse eliminates all late-time resonance.

Figure 4.58 shows several convolutions of the Version 1 signal with the E-Pulse

based on Version 1 estimated poles. This is the correct answer, so the portion of

the convolved signal to the right of the vertical line should be greatly reduced. In a

noise-free case it should be equal to zero. In this case it is weak, but not equal to

zero due to the added noise.

Figures 4.59 through 4.61 are incorrect matches between the E-Pulse and the

received signal. Because the E-Pulses used to generate these figures were developed

for a different set of frequencies than were present in the signal, the convolved signal

to the right of the vertical line was not expected to be reduced as much as seen

in Figure 4.58. The signal on the right side of each figure oscillated in a manner

consistent with a damped sinusoid, indicating that the E-Pulse failed to eliminate all

late-time resonance. This is an indication that the technique was working properly.

The oscillations on the right sides of Figures 4.60 and 4.61 were less pronounced

than that of Figure 4.59, but were still obviously due to damped sinusoidal oscillation

rather than noise. The closest match to Version 1 in E-Pulse experiments was Version

4, indicating that confusion between these two targets is possible.

Figures 4.62 and 4.63 show the results of target recognition tests using the

E-Pulse in the presence of various amounts of noise. The pulses were generated for

Synthetic Data based on parameters estimated via M-TLS-MPM at 25 dB SNR and

at 13 dB SNR. Noise was added so that the SNR ranged from 23 dB to 1 dB. Signals
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Figure 4.58 Eight convolutions of E-Pulse for Synthetic Data Version 1 with Noisy
Version 1 Signal, 19 dB SNR, vertical line at late time start
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Figure 4.59 Eight convolutions of E-Pulse for Synthetic Data Version 2 with Noisy
Version 1 Signal, 19 dB SNR, vertical line at late time start
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Figure 4.60 Eight convolutions of E-Pulse for Synthetic Data Version 3 with Noisy
Version 1 Signal, 19 dB SNR, vertical line at late time start
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Figure 4.61 Eight convolutions of E-Pulse for Synthetic Data Version 4 with Noisy
Version 1 Signal, 19 dB SNR, vertical line at late time start
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Figure 4.62 E-Pulse, Percent Correct ID vs SNR (dB), Signatures: Synthetic Data
Versions 1,2,3, & 4 estimated from 25 dB data
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Figure 4.63 E-Pulse, Percent Correct ID vs SNR (dB), Signatures: Synthetic Data
Versions 1,2,3, & 4 estimated from 13 dB data
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corresponding to each of the four filters were used at each SNR level. Each signal

was repeated 100 times with different noise samples. The number of times each filter

correctly recognized its associated signal at each SNR level is shown in the figures.

The performance of the E-Pulse was significantly worse than that of the al-

gorithm based on MMAE-MAP. Figure 4.62 can be compared to Figure 4.38 to see

the SNR required for successful target recognition by the E-Pulse and MMAE-MAP

techniques, respectively. The same signatures (sets of oscillation and damping rates)

were used to represent the targets in each case. A similar comparison can be made

between Figures 4.63 and 4.39, in which signatures were estimated from 13 dB SNR

data.

Using synthetic data and estimated poles, the E-Pulse technique needed ap-

proximately 12 dB SNR or better to achieve accurate identification in over 90% of

cases. This compares poorly to the MMAE-MAP technique, which requires an SNR

of −7 dB or higher to achieve the same result. It is superior to the E-Pulse results

found by Mooney, et. al [92], in which 20 to 42 dB SNR was required to achieve

a 90% rate of successful identification, although differences in the target data and

frequencies prevent a direct comparison. Mooney, et. al simulated scattering from

wire targets via a combined SEM and Method of Moments (MoM) technique [92].

The frequencies used to generate the E-Pulse for each target were found via the same

SEM/MoM technique.

4.6 Chapter Summary

A target recognition algorithm is presented which exploits the late-time scatter-

ing predicted by the Singularity Expansion Method. The target recognition system

is based on MMAE and uses a Kalman filter to represent each target signature in

a library. It can successfully distinguish between simple-shape, conducting targets

in free space in the presence of a significant amount of white, Gaussian noise. The

technique is able to operate in much greater levels of noise than a target recognition
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technique based on the Extinction Pulse which used the same pole estimates. Fur-

ther research may broaden the scope of available targets to include those of more

complex shape and that are near or inside media other than free space.

This algorithm declares an unknown target to match one of the target signa-

tures within its library. For a correct identification to be made, the library must

contain the correct signature. That requires users of this technique to determine

which target types are likely to be encountered, or otherwise of sufficient interest,

and ensure that signatures for those target types are developed and the correspond-

ing filters included in the library. Use of this algorithm with an insufficient library

will generate false reports.

The success of the target recognition system depends on accurate estimation of

the poles present in the late-time signal. Since the pole estimation technique M-TLS-

MPM had difficulty estimating poles for the weak scattering from curved surfaces,

the target recognition system has difficulty with targets such as spheres. In addi-

tion, M-TLS-MPM had difficulty estimating higher-frequency poles in many cases.

Improvements in M-TLS-MPM or the pole combining algorithm PA&A will allow

identification of more valid poles and the use of higher-order models in the target

recognition algorithm. Further development of some signatures, such as that of the

Block 123 or Combo A targets, may improve performance of the target recognition

algorithm when the elemental filter representing that target is used.

A target’s late-time scattered signal consists, in theory, of an infinite number of

scattering modes. These modes can notionally be divided into significant, marginally

significant, and insignificant modes. The significance of a given scattering mode is

due to its amplitude relative to other scattering modes and noise. M-TLS-MPM and

similar pole estimation programs that are based on analysis of the late-time signal

will not estimate poles for insignificant modes. Such algorithms may or may not

estimate poles for modes that are marginally significant, depending on parameter

values in the algorithm and the amount of noise in a signal.
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If poles for marginal modes are not estimated, the target filters in the MMAE

algorithm are in effect based on reduced order models. In some cases in this re-

search, unmodeled terms appeared to lead to incorrect identifications. Adjusting

parameters to allow more poles to be estimated allows the possibility that spurious

pole estimates, based on noise, will be included in the signature. These additional

poles could also lead to incorrect identifications. Results of the suppressed mode

experiment in Section 4.2.2 indicate that states representing weakly excited modes

will react properly to the weak excitation. Those results may tempt a user of this

algorithm to set pole estimation parameters in a ’loose’ manner and deliberately

allow some noise-induced, spurious poles, knowing that they are likely to be weakly

excited when the target recognition system is used. That is a false notion, since

what matters is the performance of the MMAE system as a whole, not that of a

single filter. Spurious pole estimates lead to additional states that may react to a

component of a signal which the filter was not intended to match. Users of this

algorithm must balance a desire for a complete description of the target’s signature

against a desire to eliminate spurious poles.

Successful use of the algorithm also depends on proper tuning of the noise

model. This tuning consists primarily of adjustments to the dynamics noise covari-

ance in each Kalman filter. An additional tuning option involves varying the units of

the parameters in the system dynamics matrix to change its numerical conditioning,

which affects the filter performance. Tuning is a process involving trial and error.

Filters should be tuned in two stages. First, they should be tuned individually, to

ensure they follow the desired signals and fail to follow undesired ones. They must

also be tuned to work well as elements of an MMAE system.
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V. Conclusion and Recommendations

The target recognition system presented here, based on Multiple Model Adaptive

Estimation (MMAE), can associate late-time radar data with a signature developed

in advance. The process is simple and computationally efficient compared to tech-

niques involving synthetic aperture radar. The recognition algorithm has better noise

resistance than the Extinction Pulse (E-Pulse) [18, 52, 92, 112, 113, 117] and related

techniques [14, 36, 58, 117] that have been the subject of most research into target

recognition using late-time scattering from transient radars.

The target recognition technique has been demonstrated using simulated scat-

tering data from simple geometric shapes, such as cylinders and blocks of conducting

material. These shapes may be found as substructures on various ground vehicles,

or as field equipment or weapons such as land mines.

The target recognition technique is resistant to white, Gaussian noise, so it

would be resistant to intentional interference (jamming) using white noise or wide-

band noise. It is not designed to be resistant to narrowband interference, so inten-

tional interference using single tones near the oscillating rate of targets in the library

may be more successful in causing false target declarations than white noise.

To recognize targets, it is necessary first to have an adequate target model for

each, based on their natural resonant frequencies. The more accurately a target’s

significant frequencies are measured, the better the target recognition results will

be. To provide for better estimates, an improved estimation algorithm, the Modified

Total Least-Squares Matrix Pencil Method (M-TLS-MPM), has been demonstrated.

M-TLS-MPM has improved performance in noise compared to other versions of the

Matrix Pencil Method (MPM), such as TLS-MPM [47, 120] and MMP3 [69]. M-

TLS-MPM is more noise sensitive than the target recognition algorithm, however,

so it should be used under controlled conditions to minimize the effect of noise.
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While poles estimated with M-TLS-MPM did not in all cases match previ-

ously published results, the poles estimated for each target illuminated at various

aspect angles tended to occur in approximately the same locations in the complex

plane. That is consistent with the prediction in SEM theory that poles are aspect-

independent. A simple algorithm, Pole Association and Averaging (PA&A), has

been developed to combine frequencies estimated via M-TLS-MPM from several as-

pect angles of the target into a single set of frequencies representing the target at a

broad range of aspect angles.

Signals reconstructed using the multiple-aspect (PA&A) poles followed the

scattered signals with little error. There were cases in which some poles estimated

for a target did not correspond to poles at other azimuths. The PA&A algorithm

rejected those non-corresponding poles and generated a set of average poles for the

target that still led to good signal reconstruction in most cases. Since the rejected

pole estimates were not significant contributors to reconstruction, they may have

been the result of noise. The frequencies found by M-TLS-MPM and PA&A are

used to develop the component elemental filters of the MMAE target recognition

algorithm.

5.1 Contributions

This research has contributed to existing knowledge in the areas of signal pro-

cessing and stochastic estimation. The overall contribution of this research is the

application of stochastic estimation theory, specifically the MMAE-MAP technique,

to the problem of target recognition by late-time resonance. An MMAE-MAP al-

gorithm was developed, implemented, and tested as the basis for a successful target

recognition algorithm. The algorithm can successfully distinguish the targets used in

this research from one another when the signal-to-noise ratio (SNR) is approximately

3 dB, with few or no errors.
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The MMAE-MAP algorithm has much better resistance to additive, white,

Gaussian noise than the E-Pulse algorithm [113]. In tests using damped sine series

data, the MMAE-MAP target recognition technique was able to achieve a success

rate of 90% when the minimum SNR was between -15 and -7 dB, depending on the

signal used. The E-Pulse technique required a minimum SNR between +7 and +11

dB, depending on the signal, to achieve a 90% rate of successful identification for

synthetic data.

In the signal processing area, a further contribution is the Modified Total Least-

Squares Matrix Pencil Method (M-TLS-MPM), a novel variant of the Matrix Pencil

Method (MPM) [49]. M-TLS-MPM combines elements of two MPM variants, the

Total Least-Squares Matrix Pencil Method (TLS-MPM) [120] and the Modified Ma-

trix Pencil Method 3 (MMP3) [69], into a single algorithm with improved parameter

estimation performance in noise. In tests with complex damped exponential data,

the M-TLS-MPM algorithm achieved lower mean-square error (MSE) in parameter

estimates than either TLS-MPM or MMP3 when the SNR was 11.4 dB or less. It

approached the Cramer-Rao bound at SNR levels above 11.4 dB. The M-TLS-MPM

and the MMP3 use an iterative technique known as the Low-Rank Hankel Approx-

imation (LRHA) [66, 69]. The effect of a varied number of iterations on parameter

estimation was explored. The reduction in MSE of the parameter estimate was not

significant after the fourth iteration for the cases studied. Most of the reduction in

parameter MSE is attributed to the first iteration.

This algorithm could contribute to Air Force efforts to detect and identify

vehicles and air defense weapons hidden in foliage or under camouflage, using recon-

naissance aircraft or unmanned air vehicles. Other potential applications of military

interest involve scanning packages and personnel at a distance for the presence of

weapons. It may also enable rapid detection and identification of land mines and

unexploded ordnance from aircraft.
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5.2 Recommendations for Future Research

Research was conducted in the areas of signal processing and stochastic estima-

tion. The recommendations for further research fall naturally into these two areas,

in addition to the field of electromagnetics. The recommendations are organized by

area in the following sections.

5.2.1 Recommendations for Future Electromagnetics Research. The targets

measured and simulated in this research have been treated in a free-space environ-

ment. In other words, all measurements and predictions have separated the target

from other targets and media, save for the styrofoam mounts used in measurement

ranges. In a real-world application, the target of interest may be a ground vehicle,

a water vehicle, an underground structure, or a land mine. Hanson and Baum [42]

have shown how to approximate the poles of an object within or adjacent to a lossy

dielectric medium such as earth or sea water. Their result is a perturbation formula

based on an exact integral equation.

It will be useful to measure targets with short-pulse illumination and compare

to swept-frequency results transformed into the time domain. Most likely the targets

to be measured with short-pulses will be larger than those discussed herein, so it will

be necessary to scale target size and frequencies. That is easily accomplished with

swept-frequency results. If the object is longer, wider, and deeper by a factor of

x, the wavelength must be longer by a factor of x, so the frequency must be lower

by a factor of x. In this way, a three-inch-long cylinder with a one-inch diameter,

measured from 2 to 18 GHz is equivalent to a three-foot-long cylinder with a one-foot

diameter, measured from 166 MHz to 1.5 GHz.

In addition to short-pulse measurements, it will be useful to perform time

domain simulation of CAD models of the targets. Limited results from TEMPUS

[122] were considered, but the results were reported in the frequency domain and

reconverted to time domain. Direct reporting of time-domain results removes two
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steps, FFT and IFFT, which contribute to uncertainty in the result. Direct time-

domain results may then be compared to frequency domain results transformed into

the time domain.

If this target recognition algorithm is implemented in a ground-to-ground sit-

uation, the target may be partially obscured by terrain. If only a portion of a target

is visible to the radar, some substructures will not be directly illuminated, and their

ringing returns will be reduced significantly. That will skew the perceived signature

toward the more strongly illuminated poles. The target recognition algorithm may

then be unable to identify the obscured target properly. Additional research can

explore the ability of the algorithm to discriminate between several targets when the

targets are partially obscured.

Lehman [63] developed statistical models for fields inside cavities. This ap-

proach applies various simplifying assumptions to the natural modes present in a

fully-enclosed cavity (no apertures) of general shape. Lehman did not attempt to

determine poles for any specific target, but his techniques hold promise to find an-

alytic solutions, based on statistical treatment, for a wider variety of objects than

is possible using only deterministic approaches. If the target recognition technique

developed herein is applied to ground vehicles, the scattered signal from some vehi-

cles (tanks, artillery, etc.) may include a significant cavity response from the main

gun at some aspect angles. If the technique is applied to identification of concealed

firearms carried by an individual person, the cavity response from the barrel of the

weapon may be significant for sufficiently high frequencies. Further statistical or

analytic development of late-time scattering from cavities may assist in development

of signatures for targets with such cavities.

It may be possible to improve the effective bandwidth of radar scattering data

using a technique called bandwidth extrapolation (BWE, a form of super resolu-

tion) [19, 29]. BWE is a technique ordinarily associated with synthetic aperture

radar (SAR) which can lead to finer details in a SAR or inverse SAR image. It
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may be useful in the analysis of the measured data. From the author’s experience

using BWE, the effective bandwidth of an inverse SAR image can be improved by a

factor of two with only a minor addition of spurious features (correlated noise) in the

image. The applicability of BWE to the late-time resonance due to swept frequency

measurements may be considered. Other super-resolution techniques, including var-

ious Maximum Entropy Method techniques, have been applied to the ARX, IV and

ARMAX algorithms with little success [25].

Here are some tasks appropriate for future research:

1. Study theoretical effect of lossy dielectric half space on target signatures so

the algorithm can be applied to targets on or under ground or sea. Measure

targets embedded in moist soil, inside a styrofoam container, to trace the effect

of the soil.

2. Measure and simulate more complicated targets to move algorithm to real

world applicability.

3. Measure and simulate targets with resistive or dielectric coatings. This will

allow extension of the target recognition technique to targets other than highly-

conductive metallic bodies.

4. Measure targets with short-pulse illumination (collecting time-domain data)

and compare the resulting late time return to the results of swept-frequency

illumination (frequency-domain data) which has been transformed to the time

domain via IFFT.

5. Simulate targets in a time-domain simulation such as TEMPUS [122] and com-

pare the resulting late time return to the results of a frequency domain sim-

ulation such as CARLOS [138] or JRMBOR [111], involving the same target

geometry, after transformation into the time domain via IFFT.

6. Develop SEM theoretical poles for the interior of a circular cross-section cavity

which is open at one end. A scalar Green’s function for the cavity is available
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[22, 126] which can be converted into a dyadic Green’s function [6]. This will

allow application of the target recognition technique to objects such as tanks

and artillery pieces, for which waveguide response may be significant at some

frequencies and aspect angles.

7. Apply the statistical electromagnetics techniques of Lehman [63] to find poles

analytically for various objects including cavities.

8. Apply bandwidth extrapolation [19, 29] to the IFFT algorithm to see if it is

possible to improve the amount of useful data without distorting the late-time

signal.

9. For efficient analysis of targets over wider bandwidths, apply nonlinear (log-

arithmic) sampling to the IFFT algorithm to maintain adequate sampling of

lower frequencies while reducing the number of high-frequency samples.

10. Estimate the poles of a cube and blocks with edge lengths in the proportions

1:1:2 and 1:2:3 by analysis of the impedance matrix in a method of moments

simulation. Simulate the entire object in each case, and compare the results

to those of Long [68].

11. Simulate and analyze the signals scattered from a cube and blocks with edge

lengths in the proportions 1:1:2 and and 1:2:3 at angles other than backscatter.

Find aspect angles at which scattering is strongest, and estimate poles from

the scattered signals at those angles via M-TLS-MPM.

5.2.2 Recommendations for Future Signal Processing Research. The Ma-

trix Pencil Method and its variants are designed to estimate the parameters of a

summation of complex exponential terms with constant coefficients. These corre-

spond to first-order poles in the Laplace domain. If the target response contains

second or higher-order poles, the time-domain signal will contain complex exponen-

tial terms with time-varying coefficients. Conducting objects which are coated in a

resistive material will have second-order poles in their late-time response [132], and
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the scattering modes corresponding to these poles may be significant. To estimate

poles from such a target, it may be necessary to modify the Matrix Pencil Method

(and variants thereof, such as M-TLS-MPM) significantly.

The late-time response from objects near to or embedded in a lossy dielectric

half-space includes branch points [37]. If the scattering mode associated with these

branch points is significant, further modifications of the Matrix Pencil Method (and

its variants) may be necessary.

Here are some tasks appropriate for future research:

1. Study the effect of narrowband or colored noise on estimates of target signa-

tures.

2. Measure and simulate more complex targets to move algorithm to real world

applicability.

3. Study the effect of a lossy dielectric half space on target signatures (changed

or added poles) so the algorithm can be applied to targets on or under the

ground or sea, or small targets adjacent to a human body.

4. Study the effect of resistive or dielectric coatings on estimated signatures. De-

termine whether Matrix Pencil Method variants can be modified to account

for second order poles or other phenomena.

5. Apply Bandwidth Extrapolation [19, 29] to the radar data and note the effect

on the Matrix Pencil Method.

6. Develop guidelines for the number of iterations to use in the Low-Rank Hankel

Approximation (LRHA).

7. Compare pole estimation performance in noise of MPM variants against that

of resonance annihilation techniques.

8. Compute the Cramer-Rao bound for synthetic data and recompute it for

Kumaresan-Tufts data.
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9. Develop the signature of the Block 123 and Combo A targets again using

different parameter values in the M-TLS-MPM and PA&A codes. Also develop

multiple signatures representing these targets from limited sets of aspect angles.

5.2.3 Recommendations for Future Stochastic Estimation Research. The

Kalman filter algorithm discussed in Section 2.4 is known as the Joseph form of

the filter. Other variations exist which have better numerical stability, such as

the U-D covariance factorization form [77]. In the U-D factor form, the covari-

ance matrix P(t−i ) is factored into component matrices U(t−i ) and D(t−i ) such that

P(t−i ) = U(t−i )D(t−i )UT (t−i ). The algorithm computes and uses ˆ̄x, U and D rather

than ˆ̄x and P. The U-D factor form provides improved numerical stability and

guarantees that the covariance of the state estimate is positive semidefinite. In ad-

dition, the numerical precision required to represent computations with the U and

D matrices accurately is less than that needed for computations with the P ma-

trix. The disadvantage of the U-D technique is an increase in required computations

compared to a conventional Kalman filter. However, the number of computations

required is actually less than the number required for the Joseph form Kalman filters

implemented herein.

Neither the conventional nor the Joseph form of the Kalman filter is numer-

ically stable, but the U-D factor form can be shown to be numerically stable [77].

Numerical stability as discussed here means that the computed result of the algo-

rithm applied to a given problem corresponds to the exact solution of a problem

that is slightly perturbed from the given problem. This is the standard definition of

Wilkerson [141].

The radar signal is assumed to be corrupted by white noise, but the author

has conducted no experiments to verify that the white assumption is a good one.

There may be colored noise in measured radar data either in experimentation or in

use of this algorithm in realistic conditions. The noise in computational codes is not
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strictly white. It will consist of some white noise in addition to some band-limited,

or colored noise. The target recognition algorithm could be modified to account for

colored noise.

If a few targets are difficult to distinguish due to nearly identical frequencies, a

hierarchical system can be adopted [139]. In this case, the algorithm would identify

the target by comparison to a preliminary model which could fit a few actual tar-

gets. Then it could initiate a new set of filters, each of which used a more detailed

linear system model of the target’s response. A more detailed model would include

frequencies which may have been left out of the preliminary model. A variant of

the hierarchical approach known as MMAE with Filter Spawning [33] has been ap-

plied to failure detection and identification problems. Once a failure is detected, the

MMAE with Filter Spawning algorithm adds filters to the bank. These ‘spawned’

filters represent partial, rather than complete, failures. Spawned filters in the con-

text of target recognition could be based on more elaborate, higher-fidelity, models

of the scattered signal from various targets. If the declared target is known to have a

high probability of being confused with another target, higher-fidelity target models

may be employed when subsequent pulses are used to illuminate the target. An al-

ternative to a hierarchical approach may be a moving-bank MMAE algorithm, which

could incorporate a very large number of linear system models, but would only initi-

ate those which are considered likely to be correct, based on scaled residuals [76,136].

The hierarchical, the filter spawning, or the moving-bank MMAE system may be a

good way to deal with non-nominal configurations of targets, i.e., small changes in

target configuration that make its signature deviate from the standard. In the case

of an armored vehicle target, a non-nominal configuration could be an open hatch

or a turned turret.

Lund [70] has proposed an inter-residual distance feedback technique to in-

crease distinguishability between filters in MMAE. This technique adjusts the noise

covariance matrices of individual Kalman filters to keep a measure of of inter-residual
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distance above a specified minimum value. The technique is intended to increase dis-

tinguishability of the elemental filters within an MMAE algorithm.

Here are some tasks appropriate for future research.

1. Replace existing Kalman filters with U-D factored form algorithm which pro-

vides improved numerical precision and stability, and exploits sparse nature of

matrices.

2. Apply filter spawning and moving-bank concepts to allow efficient use of larger

target signature libraries by the MMAE-MAP algorithm.

3. Perform additional filter tuning experiments to get best possible performance

from the system.

4. Port code from MATLAB to C++ and compile it to improve speed of execution.

Benchmark execution speed against other target recognition techniques using

similar computing power.

5. Study effect of narrowband or colored noise on target distinguishability

6. Replace existing Kalman filters in the MMAE-MAP algorithm with Kalman-

based optimal smoothers which provide improved noise resistance. Apply a

U-D formulation of the Kalman smoother for improved numerical precision

and stability.

7. Redevelop the filter equations to account for a mix of first and second order

poles.

8. Find the time domain contribution due to branch point singularities in the s

plane. Redevelop the filter equations to account for branch point contributions.

9. Apply Inter-Residual Distance Feedback [70, 89] to improve distinguishability

between filters.
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Appendix A. Additional Discussion on Electromagnetic Theory

In this appendix certain aspects of electromagnetic theory are discussed which were

explored to a limited extent during research, but were not central to the overall topic

of target recognition via late-time transients. The sections below cover a mathemat-

ical consideration not addressed in the Singularity Expansion Method (SEM) sphere

analytic development, a critique of the application of SEM theory to wire loops, and

some practical considerations regarding the start of late time.

A.1 Mie Series Convergence

The complex field scattered from an ideal PEC sphere at any frequency is

found using the Mie series [129]. The Mie series specified to backscattering is

Er(ω) =
1

2k

∞
∑

n=1

(−1)n+1 2n + 1

h(2)
n (ka)

∂h(2)
n (ka)

∂(ka)

(A.1)

in which k = ω/c, the sphere radius is a, and h
(2)
n (x) = jn(x)−jyn(x) is the Spherical

Hankel Function of the second type [4]:

h(2)
n (x) = (

π

2x
)1/2H

(2)
n+1/2(x) = (

π

2x
)1/2[Jn+1/2(x) − jYn+1/2(x)] (A.2)

In the Mie-series code used to compute the sphere scattering, the field is mul-

tiplied by a factor of 2
√

π. That allows the user to find RCS by multiplying the field

by its conjugate. Essentially, the factor 4π found in calculations of RCS is introduced

here and split between the field and its conjugate. This convention is widely used

in radar processing software and computational electromagnetics codes. If power is

calculated using these fields, the magnitude must be reduced by 10.99 dB to get the

correct value.

The Mie series converges quickly at lower frequencies but requires more terms

at higher frequencies. To use it efficiently, a guideline is needed for the correct number
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of terms to employ to get the desired convergence result. The sphere radius was set

to 3” and compared the results for 10, 20, 30, 40, 50, 55, and 60-term truncations

of the series. It was found that for 18 GHz, the 40 and 50 term series agree to 6

significant digits, while the 55 and 60 term series agree to 17 digits at 18 GHz. A

most efficient computation of the Mie series would increase the number of terms used

as frequency rises. In fact, at lower frequencies the series may run into overflow or

underflow numeric errors if too many terms are employed. For frequencies below .05

GHz and a sphere of 3” radius, fewer than 20 terms must be used, at least in the

MATLAB R© formulation.

A simple rule of thumb can be developed to approximate the number of terms

required for series convergence. The number of terms required increases with either

increasing radius or decreasing wavelength. In the Mie series, the radius a and

wavelength λ terms always appear in the ratio ka = 2πa/λ in the arguments of

functions. That means a useful rule of thumb for convergence should be based on

the ratio of radius to wavelength. The number of terms required can be related

directly to this ratio to find a relation between a desired level of convergence and

the number of terms necessary to achieve it.

It is interesting to note that the Mie series relies on spherical Hankel functions.

The large argument asymptotic form of these functions is based on a square root of

the argument.

Table A.1 shows the results of another convergence test. Convergence was

verified using a Mie series code and adjusting the number of terms until there was

complete agreement between answers to fifteen digits. The point of that was to try

to fit a curve to the convergence limit. Various functions of a/λ were compared to see

if the number of terms required can be modelled simply. Here f is frequency in GHz,

a is the sphere radius, c is the speed of light in free space and λ is the wavelength.

A reasonable fit within the indicated frequency range is found via either the square

or cube root of a/λ. The function ceil is the smallest integer which is greater than
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frequency a/λ Conver-

(GHz) (a = 3”) ceil(500a/λ) ceil(25
√

a/λ) ceil(32 3

√

a/λ) gence
0.01 0.00254 2 2 5 4
0.03 0.00762 4 3 7 5
0.10 0.0254 13 4 10 6
0.30 0.0762 39 7 14 7
1.00 0.254 128 13 21 12
3.00 0.762 382 22 30 20
10.00 2.54 1271 40 44 37
30.00 7.62 3813 70 63 76

Table A.1 Number of terms of the Mie series required for 15-digit convergence,
compared to functions of a/λ

or equal to the argument; it rounds up. A very good fit can be achieved over a wide

bandwidth if the number of terms used is equal to:

2 + ceil(24
√

a/λ) (A.3)

A.2 Sphere Theoretical Poles

In this section the theoretical development of sphere late-time scattering via

SEM is discussed. Theoretical sphere late-time scattering is used to test the pole

estimation algorithms in Chapter III. Some additions to the SEM theory are made

and theoretical results are compared to measured results rom a sphere. A sphere is

the one target for which a complete analytic description exists of both narrowband

scattering (the Mie series) and late-time, ultra-wideband scattering. Comparisons to

theory allow assessment of the quality of the measured and computed sphere data.

Theory is also compared to computational results for a sphere.

Compared to other simple shapes, the sphere is weakly resonant. The poles of

the sphere have larger damping rates |Ω| than other targets of similar size such as

plates, wires, and cylinders. Therefore, the exponential terms associated with each

pole die out more quickly than other targets’ exponential terms. That makes the
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theoretical sphere a difficult test case for the pole estimation techniques introduced

in Chapter III.

The original development of SEM included a complete theoretical development

for a sphere, as well as a short list of poles and a graph of a few pole locations [6].

Tesche published a more extensive graph of pole locations in 1973 [131]. Here are

the theoretical SEM poles for a sphere assumed to be a perfect electrical conductor.

The poles are the frequencies sq,n,n′ which satisfy one of two equations. Those with

subscript q = 1 affect surface current but not surface charge density; they satisfy:

kn(s1,n,n′a/c) = 0, n = 1, 2, ...

−floor(n/2) ≤ n′ ≤ floor(n/2), n′ 6= 0 if n even

(A.4)

The floor function in Equation (A.4) returns the largest integer less than or equal

to the argument; it ‘rounds down’. Those with subscript q = 2 affect both surface

current and charge density. The q = 2 poles satisfy:

d
ds

[(a/c)s2,n,n′kn(s2,n,n′a/c)] = 0, n = 1, 2, ...,

−floor((n + 1)/2) ≤ n′ ≤ floor((n + 1)/2), n′ 6= 0 if n odd

(A.5)

The poles in the two cases give rise to the solenoidal (q = 1) and irrotational

(q = 2) terms in the surface current density. Both q = 1 and q = 2 poles should be

present in the field scattered from a sphere. In each of these equations, kn is defined

by

kn(ζ) =
exp(−ζ)

ζ

∑n
p=0

(n+p)!
p ! (n+p)!

(2ζ)−p

= −(j−n)h
(2)
n (−jζ)

(A.6)

in which h
(2)
n (ζ) is the spherical Hankel function and
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ζ =
a

c
sq,n,n′ (A.7)

To take the derivative of a complex function with respect to a complex variable,

differentiability must first be proved. This is accomplished in Section A.3 for the

derivative shown in Equation (A.5):

d
dζ

[ ζkn(ζ) ] = d
dζ

[

exp(−ζ)
∑n

p=0

(n + p)!
p ! (n + p)!

(2ζ)−p

]

= d
dζ

[ exp(−ζ) ]
∑n

p=0

(n + p)!
p ! (n + p)!

(2ζ)−p

+ exp(−ζ)
∑n

p=0

(n + p)! 2−p

p ! (n + p)!
dζ−p

dζ

= − exp(−ζ)
∑n

p=0

(n + p)!
p ! (n + p)!

(2ζ)−p

+ exp(−ζ)
∑n

p=0

(n + p)! 2−p

p ! (n + p)!
(−p)ζ−p−1

= − exp(−ζ)
∑n

p=0

(n + p)! 2−p

p ! (n + p)!
ζ−p(1 +

p
ζ
) (A.8)

The poles can be found numerically from Equations (A.6) and (A.8). The series

in each equation is simply a polynomial in ζ; the factor − exp(−ζ) has no effect on

the zeros. The equation may be multiplied by ζn to put it in a more convenient form.

It is then straightforward to calculate the roots of each polynomial numerically.

The first several sphere poles are listed below for the cases q = 1 and q = 2. The

q = 1 poles do not appear in the surface charge equations in Baum’s development of

the sphere poles, while the q = 2 poles do [6].

The fourth column of Table A.2 represents the normalized frequencies in ζ,

while the fifth lists the frequencies for a six-inch diameter sphere. The units in the

fifth column are in giganepers per second and gigaradians per second.
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q n n′ ζ sq,n,n′ (Gn/s±jGrad/s)
1 1 0 −1.0000 ± j0 −3.9370 ± j0
1 2 1 −1.5000 ± j0.8660 −5.9055 ± j3.4095
1 3 0 −2.3222 ± j0 −9.1425 ± j0
1 3 1 −1.8389 ± j1.7544 −7.2398 ± j6.9070
1 4 1 −2.8962 ± j0.8672 −11.4024 ± j3.4143
1 4 2 −2.1038 ± j2.6574 −8.2826 ± j10.4623
2 1 1 −0.5000 ± j0.8660 −1.9685 ± j3.4095
2 2 0 −1.5961 ± j0 −6.2837 ± j0
2 2 1 −0.7020 ± j1.8073 −2.7636 ± j7.1155
2 3 1 −2.1571 ± j0.8706 −8.4927 ± j3.4274
2 3 2 −0.8429 ± j2.7579 −3.3184 ± j10.8577
2 4 0 −2.9487 ± j0 −11.6092 ± j0
2 4 1 −0.9542 ± j3.7148 −3.7568 ± j14.6251

Table A.2 Sphere Theoretical Poles

There are in theory an infinite number of poles. Those found for q = 1 have

a real component Ω with larger magnitude than comparable poles from q = 2. This

observation is based on the poles for n = 1 through n = 27, which follow a definite

pattern. Poles associated with a higher index n depart from this pattern as noted

below. Baum noted the poles for a given n fall approximately in an arc from −jnc/a

to +jnc/a through −0.66nc/a. In Figure A.1 it can be seen that this approximation

holds through n = 27.

Poles for n > 27 did not fit the pattern predicted by Baum due to limits of nu-

merical precision in the computational software package. The poles for n = 1 : 35 are

shown in Figure A.2 and those for n = 1 : 85 are shown in Figure A.3. MATLABR©

is unable to calculate the poles beyond n = 85, because of numerical underflow or

overflow somewhere in the calculation. With higher-precision computations, more of

the computed poles would fit the pattern seen for the n = 1 : 27 poles. MATLABR©

computes roots of a polynomial by computing eigenvalues of the polynomial’s com-

panion matrix [45,73]. Interestingly, the q = 1 and q = 2 poles reached convergence

limits at the same value of n although they had different functional forms.

A-6



−80 −70 −60 −50 −40 −30 −20 −10 0
0

20

40

60

80

100

Figure A.1 Theoretical poles for 3” radius sphere for n=1 through n=27, q=1 (·)
and q=2 (+)
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Figure A.2 Theoretical poles for 3” radius sphere for n=1 through n=35, q=1 (·)
and q=2 (+)
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Figure A.3 Theoretical poles for 3” radius sphere for n=1 through n=85, q=1 (·)
and q=2 (+)

The original pole derivation would lead one to assume that, as incident fre-

quency increased, the resonant q = 2 poles forming a curve closest to the Ω = 0 axis

would continue in a more or less straight line toward ω = ∞ and ω = −∞. The

poles probably in fact fit this pattern, but the numerical precision required to find

them is beyond the 15 digits available to MATLABR©.

In any event, the poles closest to the jω axis are the ones associated with the

slowest-decaying, or longest-duration signals. These q = 2 poles are the ones which

have the most significant effect on the late-time signal because their effect extends

the furthest. The size of the coefficients associated with these poles should also be

considered to confirm that they are in fact the most significant.

Figure A.4 shows the upper half-plane sphere poles with an oscillating fre-

quency ω < 36π gigaradians per second and a damping rate Ω > −8.4 giganepers

per second. These are the poles expected to be excited by frequencies up to 18

gigahertz. The magnitudes for the coefficients estimated for those poles are shown
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Figure A.4 Theoretical poles with Ω > −8.4 for 3” radius sphere

in Figure A.5. Only a few poles account for a large portion of the signal magni-

tude. The sphere late-time scattering was reconstructed using only the poles with

the largest coefficients, numbered 2, 31, 32, 33, and 34 in Figures A.4 and A.5. The

reconstruction error using only these poles was 0.64 percent. The most significant

contributors to the signal were not the q = 2 poles with the smallest |Ω| and a range

of |ω| values, but a few poles, primarily with q = 1, with the smallest |Ω| and |ω|.

The poles numbered 31 through 34 in Figure A.4 correspond to four of the

q = 1 poles shown in Table A.2. The poles numbered 1 through 5 in Figure A.4

correspond to five of the q = 2 poles shown in Table A.2. Poles numbered 6 through

30 in Figure A.4 are q = 2 poles with n ≥ 4 that are not shown in Table A.2 .

Figure A.6 shows a portion of the late-time scattering for an ideal sphere with

a diameter of six inches. The large negative return at approximately 5” downrange

from the center of the sphere is the creeping wave return due to current induced on

the illuminated side of the sphere continuing around the unilluminated side and back
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Figure A.5 Estimated coefficient magnitudes for theoretical poles with lowest |Ω|
for 3” radius sphere
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Figure A.6 Theoretical late-time return from a 3” radius sphere, incident illumi-
nation 0.1 to 18 GHz
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to the illuminated side, where it radiates energy back to the source of illumination

[59].

A.3 Proof of Differentiability for Sphere SEM Poles

Here a mathematical consideration is introduced which has not been explicitly

included in the literature to date [6,131]. Taking the derivative of kn(ζ) requires that

its differentiability with respect to a complex variable ζ first be established using the

Cauchy-Riemann equations. If a complex function of a complex variable satisfies

these equations, it is differentiable [64, 125]. This is more easily shown using the

summation form of the definition in Equation (A.6).

First, it must be possible to identify real and imaginary components of ζkn(ζ)

as well as modulus (complex magnitude) and phase components. Let ζ = x + jy, so

ζkn(ζ) = (x + jy)kn(x + jy) =
n

∑

p=0

(n + p)! 2−p

p ! (n + p)!
(x + jy)−p exp(−x − jy) (A.9)

The differentiability of each term may now be evaluated separately because differ-

entiation is a linear operator in the complex plane as well as the real line [64, 125].

Differentiability is then determined for

(x+jy)−p exp(−x−jy) = |x+jy|−p exp(−x) exp(−jy) exp(−jp arg(x+jy)) (A.10)

so each term of ζkn(ζ) has modulus m and phase φ defined as

m = |x + jy|−p exp(−x), φ = −y − p arg(x + jy) (A.11)

and rectangular components u(x, y), v(x, y) defined as

u = m cos(φ), v = m sin(φ) (A.12)
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The Cauchy-Riemann equations [64,125] are now applied

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
(A.13)

which in their polar form are

∂u

∂m
=

1

m

∂v

∂φ
,

∂v

∂m
= − 1

m

∂u

∂φ
(A.14)

The polar form equations are easily verified

∂u

∂m
= cos(φ) =

1

m

∂m sin(φ)

∂φ
=

1

m

∂v

∂φ
(A.15)

∂v

∂m
= sin(φ) =

1

m

∂m cos(φ)

∂φ
=

1

m

∂u

∂φ
(A.16)

Each term of Equation (A.9) is differentiable by ζ, so because of the linearity dis-

cussed above, the entire equation is as well.
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Appendix B. Measurement Techniques

In this appendix, measurement and data processing techniques are discussed in de-

tail. Topics covered include data collection, data calibration, and transformation of

frequency-domain data into the time domain.

A few words of caution are necessary about the conclusions drawn from mea-

sured data. Physical targets deviate from theory. Theoretical targets are perfect

electrical conductors, with exactly zero resistance to the movement of current on

their surfaces or interiors. Measured targets were composed of metal (or covered with

metallic paint) with high, rather than perfect, conductivity. Also, target shapes may

diverge from the ideal assumption, as can be seen for the sphere and the thin wire.

The illumination also deviates from theory. Instead of a time-domain impulse, wide-

band frequency-domain illumination is transformed into a non-causal, time-domain

short pulse by the IFFT. This process involves arbitrary choices of zero padding and

windowing that have some effect on the answer. Getting good results out of radar

measurement ranges is difficult and involves both art and science, even for the much

larger returns associated with early-time scattering. The late-time return is much

weaker, making the acquisition of good data that much more difficult.

A variety of simple shapes were measured in various RCS measurement facili-

ties. The targets were measured using a swept frequency transmitter and a coherent

receiver. The result was the complex, frequency-domain scattering at each frequency

in the bandwidth. Each complex data point had an in-phase component, formed by

mixing the received signal with the incident wave, and a quadrature component,

formed by mixing the incident wave with a signal 90 degrees out of phase with the

incident wave, at the same frequency. In this way, a real measured signal can be used

to generate complex “I and Q” data. Frequency-domain measurements were used

to develop equivalent late-time signature data from each target at several azimuth

angles. The targets used are discussed in Section B.1.
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In each case, the target was measured in an anechoic chamber, which is an

enclosed room in which the walls are lined with radar absorbing material. The

target was mounted on top of a slanted pedestal of ogival cross-section, or in one

case (at Kirtland AFB) hung from the ceiling via wires. The antenna was linearly

polarized and was rotated to provide θ or φ polarizations. Figure B.1 above shows

the basic components and data flow in a stepped-frequency radar system [85].

Figure B.1 Stepped-Frequency Radar System

Measurements were taken in the Air Force Research Laboratory (AFRL) RCS

range at Wright-Patterson AFB. The incident frequencies ranged from 2.00 to 18.00

gigahertz, every 0.01 GHz. Each pulse was repeated 16384 times and coherently

integrated to boost the signal to noise ratio. This level of integration could improve

the signal to noise ratio of each measurement by 42 dB, assuming a perfect integrator.

In a theoretically perfect integrator, signal strength is multiplied by the number of

integrations, while the independent noise samples on each pulse sum incoherently

and cancel each other out. Therefore, noise power does not increase, while the

noise power is multiplied by the number of pulses integrated. In reality, coherent

integration will provide a lesser, though still significant, advantage [59].

For each target, there was a target file (.tar) for each measured azimuth.

There was also a target background file (.bkg) with only the target’s styrofoam

mount. Each measurement day there were two calibration (.cal file) measurements,
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one at each polarization, involving a calibration target with known scattering. The

calibration target was a squat cylinder, 4.5 inches in diameter and 2.1 inches in

height. Background measurements (.cbk file) involving the calibration target’s sty-

rofoam mount were also collected.

The data was calibrated according to this formula

ĒFr
reduced(ω) =

ĒFr
tar(ω) − ĒFr

bkg(ω)

ĒFr
cal(ω) − ĒFr

cbk(ω)
ĒFr

exact(ω) (B.1)

The superscript F indicates the fields are expressed in the Fourier domain.

The superscript r indicates that these are scattered fields. The subscripts on each

electric field vector refer to the data file from which the field data was taken. Each

field is a complex variable rendered in terms of real and imaginary, or “I and Q”

components. These components refer to the field strength which is in phase (I) with

a local oscillator or π
2

radians out of phase (in quadrature, Q) with the oscillator.

Each electric field is considered a function of frequency rather than time because

each is measured at a single frequency, without reference to a time variable.

If both the incident field data and the scattered field data are transformed into

the time domain, the equivalent time-dependent incident [Ēi
reduced(t)] and scattered

[Ēr
reduced(t)] fields are produced. In theory, the equivalent scattered fields will be the

same ones found had the target been illuminated with the equivalent incident field

and the time-domain response been measured. The Inverse Discrete Fourier Trans-

form used to convert data into the time domain is discussed further in Appendix D.

B.1 Target Descriptions

Several targets were measured at the RCS measurement facilities of the Air

Force Research Laboratory Sensors Directorate at Wright-Patterson Air Force Base,

Ohio. One target was measured at the Air Force Research Laboratory Directed

Energy Directorate at Kirtland Air Force Base, New Mexico.
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Very small targets were used so that the wavelength of the available radar

measurement range would match the lower-frequency modes of the targets. The

bandwidth of the range was 2 to 18 GHz, so the wavelengths of the transmitted

signals varied from 15.00 down to 1.67 centimeters. This technique is intended to

be used against larger targets measured with longer wavelength (lower-frequency)

illumination.

Table B.1 shows the dimensions of the targets measured at the AFRL/SNS

range. The block and cube targets were measured with one face down on the pedestal.

The azimuth reference was the point where one side was normal to the angle of

incidence. The Block 123 target was measured twice, once with the 0.1999” by

0.6008” face toward the radar, the other with the 0.4003” by 0.6008” face toward

the radar. In each case, The target was rotated from 0 to 90 degrees every 5 degrees.

Measurements were taken with θ and φ polarization.

Target diameter length width height
Sphere 0.9995 - - -
Sphere 0.5000 - - -

Cylinder 0.2503 1.001 - -
Cylinder 0.0629 1.270 - -
Cylinder 0.0935 0.808 - -
Cylinder 0.0937 1.196 - -
Block 112 - 0.2506 0.2506 0.5016
Block 123 - 0.1999 0.4003 0.6008

Cube - 0.4999 0.5003 0.5003

Table B.1 Targets measured with bandwidth 2-18 GHz, dimensions in inches

The measurement geometry is shown in Figure B.2. A cylinder target is shown

to illustrate. Polarization is discussed in terms of the spherical coordinates θ, the

angle away from the z̃-axis, and φ, the angle around the z̃-axis. Targets were set

on a turntable in the measurement chamber. The z̃-axis of the target was parallel

to the turntable, so rotating the turntable varied the angle θ. Figure B.2 shows φ

polarization, in which the electric field is perpendicular to the plane formed by the

z̃-axis and the incident field’s direction of propagation, r̃i (the z̃-r̃i plane, which was
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Figure B.2 Target measurement geometry illustrating φ polarization

the scan plane for measured targets). In the case of θ polarization, the magnetic

field is perpendicular to the scan plane.
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Appendix C. Computational Techniques

C.1 Computational Results in the Literature

The Singularity Expansion Method (SEM) [18], explained in Section 2.2.1, has

been applied to a limited number of targets so far. There are theoretical results for

a sphere [6] and wire loops [20, 134], plus results based on the Method of Moments

or other integral equations for a variety of other targets: polygonal wire loops [124],

elliptical wire loops [114], wire dipoles [110, 110, 131], cylinders, rectangular plates,

rectangular boxes, etc. Most of these targets were assumed to be isolated in free

space. Some solutions exist for wires in the presence of ground planes [133], objects

in or near lossy, dielectric media [12, 37, 42], coupled system consisting of two wires

or two loops [43], etc.

There is no purely analytic description of the poles for objects other than the

sphere or wire loop. The lack of further purely-analytic development is due to the

difficulty in finding the exact Green’s function needed to develop the impedance

dyadic used in Equation (2.12). That difficulty is not unique to SEM. There are

very few purely analytic results of narrowband scattering, or of early-time, ultra-

wideband scattering. However, poles have been identified for various simple objects

based on scattering simulations.

C.1.1 Cylinders and Cones. Current solutions on the surface of a body

of revolution must have a dependence on exp(jmφ), where m is an integer and φ is

the angle of any position on the surface, in the plane of rotation, with respect to an

arbitrary angle reference. This dependence is necessary because every 2mπ rotation

of an observation point around the surface of a rotationally symmetric body returns

the observer to its starting location. Surface current and scattering are therefore

composed of azimuthal modes [4, 105].
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Merchant, Moser, Nagl and Uberall [86] computed the poles of right circular

cylinders and spheroids. First they computed scattering using the Waterman T-

matrix method, a technique applicable only to bodies of revolution. To compute

poles, they computed the zeros of the determinant of the coupling matrix of the

expansion coefficients. The poles from the m = 0 through m = 4 modes were

reported.

Vechinski and Shumpert [137] also covered various bodies of revolution. They

computed scattering via electric, magnetic, and combined field integral equation

(EFIE, MFIE, CFIE) formulations of a body of revolution code. The code they

employed found separate solutions for various azimuthal modes. The poles from the

m = 0 and m = 1 modes were reported. The poles were found as the zeros of the

mutual impedance matrix. Vechinski and Shumpert found discrepancies with some

of the m = 1 mode poles found by Merchant, et al [86]. However, the poles used

for comparison in this work were from the m = 0 mode, for which the two sets of

authors agreed.

Brooks, Maier and Vechinski [25] provided pole estimates for a cone. Poles

were found via a body of revolution, method of moments code that found separate

solutions for the various rotational modes. The poles for the m = 0, m = 1, and

m = 2 modes were displayed in a graph rather than a table, so some error may have

been introduced during the process of reading the poles from the graph.

C.1.2 Thin Wire Dipoles. Various results exist for thin wire poles, us-

ing various techniques. Different results are compared for later comparison with

measured results.

Tesche [131] found late-time scattering from thin wire dipoles based on the

Method of Moments (MOM), but determined the poles using different techniques.

He conducted frequency-domain analysis of the wire to find surface currents. He then

found the time domain surface current and scattering via an Inverse Fast Fourier
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Transform. The poles he estimated are shown in the first column of Table C.1.2.

Long, Peng, Wen and Xie [67] also found surface currents via a MOM technique.

They employed a Kuhn algorithm to the mutual coupling matrix developed for MOM

[67]. The poles they find are similar to Tesche’s. The oscillating frequency is related

to the length of the wire, with harmonics present.

Sun, Chen, Nyquist, and Rothwell [130] analyzed rectangular plates of varying

widths, using thin wires as a limiting case of very narrow plates. The poles found for a

thin wire compare favorably to those found by Tesche [131] and Long [67], as shown

in Table C.1.2. The target response was simulated using an electric field integral

equation and exploiting target symmetry. Poles were found via a theorem relating

the variation of the argument of a complex function integrated along a contour to

the number of zeros and poles inside the contour. Only four poles are shown, all

in the ω > 0 region, although the paper indicates more exist. The existence of the

conjugate poles of the four poles listed in Table C.1.2 should be inferred.

Tesche Long, et al Sun, et al
−0.2576 ± j2.9091 −0.2702 ± j2.9405 −0.2571 ± j2.7344
−0.3770 ± j5.9596 −0.4178 ± j6.0758 −0.4000 ± j5.7813
−0.4618 ± j8.9441 −0.5529 ± j9.2551 −0.4857 ± j8.8889
−0.5309 ± j12.1077 −0.6440 ± j12.4281 −0.5714 ± j12.0635

Table C.1 First Four Pole Pairs of Wire Dipole, sd/c,

C.1.3 Rectangular Plates. Computed poles exist for rectangular plates of

various widths, including square plates. The square plate results were compared to

measured results for six-inch and twelve-inch square plates. Computational results

were also compared for a six-inch square plate.

Sun, Chen, Nyquist, and Rothwell [130] analyzed rectangular plates. The tar-

get response was simulated using an electric field integral equation and exploiting

target symmetry. Poles were found via a theorem relating the variation of the argu-

ment of a complex function integrated along a contour to the number of zeros and
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poles inside the contour. Only four poles are shown, all in the ω > 0 region, although

the paper indicates more exist. The existence of the conjugate poles of the four poles

shown here may be inferred. Frequencies are normalized as sa/c = (Ω+jω)a/c. The

data shows Ω increasing with increasing target width from the thin wire poles shown

in Table C.1.2 to the square plate poles shown in Table C.2. The increasing Ω means

the current dissipates more quickly. The authors did not propose an explanation for

this phenomenon. The oscillating component ω changes little as the plate width

widens.

The frequencies were not listed in a table, but only displayed on a graph. That

means some error may have been added in the process of reading the graphs. Their

normalized poles are shown in Table C.2.

Square Plate, sides=a
sa/c

−.8286 ± j2.0313
−1.8857 ± j5.0000
−1.6857 ± j8.7302
−2.0000 ± j11.9048

Table C.2 First Four Computed Pole Pairs For Square Plate

C.2 Target Simulation

It was initially desired to simulate targets using a time domain code. As

an alternative, frequency domain codes were considered. Time domain techniques

include finite volume time domain (FVTD) [35] and finite difference time domain

(FDTD) [105]. Techniques applicable to either the frequency or time domain in-

clude the method of moments (MoM) and Finite Element Method (FEM) [105]. To

use a frequency domain code in a way comparable to the frequency-domain mea-

surements, several hundred runs must be made per azimuth per target. Candidate

codes were the TEMPUS [122] package (FVTD) by HyperComp, FISC (MoM) by

SAIC-Demaco, the TSAR [82] package originally developed by Lawrence Livermore
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National Laboratory, and method of moments codes called JRMBOR [111] and CAR-

LOS [138]. Target simulation provided late-time signature data from each target at

several azimuth angles.

Developing or modifying a computational code was outside the scope of this

research. Only commercially available codes which were already hosted on computers

available to AFIT students were considered. These include a PC network and various

SGI and Sun workstations at AFIT. Supercomputers were also available at the Major

Shared Resource Center (MSRC) computer facility run by the Aeronautical Systems

Center (ASC) at Wright-Patterson AFB, Ohio. By connecting to the ASC MSRC,

it was possible to gain access to the MSRC run by the Army Research Laboratory

(ARL) at Aberdeen Proving Ground, Maryland.

The geometry for target illumination is shown in Figure C.1. Polarization

direction is given in terms of the spherical coordinate variables θ or φ for scattering

simulations. Here θ is the angle away from the z̃ axis, while φ is the angle around the

z̃ axis, starting (φ = 0) at the x̃ axis and increasing toward the ỹ axis. Polarization

is the direction of the incident Ē field, which is perpendicular to both the direction

of propagation and the H̄ field in the case of plane waves. All computational targets

had a defined set of axes, and the directions of illumination and polarization were

defined with respect to the target’s axes. Illumination directions were in arcs of

increasing θ from 30 to 75 degrees, at either φ = 0 (the x̃-z̃ plane) or φ = 0 (the

ỹ-z̃ plane). Polarization was parallel to either the θ or φ vector at that direction of

illumination.

It was originally desired to simulate targets using a finite-volume, time-domain

code known as TEMPUS. Since the phenomenon of interest in this research was asso-

ciated with time-domain scattering, a time-domain simulation appeared to be most

appropriate. It would allow a direct approach to simulating the phenomenon, rather

than combining multiple, independent, steady-state simulations at single frequencies

and finding the time domain via IFFT. It was also thought that a time domain code
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Figure C.1 Coordinates and geometry of illumination

would allow efficient use of computational resources, allowing a single run per aspect

angle, per target. Some risk of inaccurate results was possible, since Miller states

that time-domain models accumulate errors in late time [88].

Difficulties arose with the volume grid required around each target. Frequency-

domain simulations characterize the surface of a conducting target as a connected

set of facets, called a surface grid. For time-domain simulations, the space around

the target must also be characterized, as a set of connected faceted shapes,, such as

tetrahedrons or cubes, called a volume grid. Gridding targets for use with TEMPUS

posed a series of technical difficulties, including the development and translation

of target geometry files, and operation of various volume grid tools. The technical

problems were not solved successfully. Continued development of the TEMPUS

software package will make this an attractive option for future researchers.

Instead, two frequency domain codes, JRMBOR and CARLOS, were used.

Both are described below. JRMBOR, CARLOS, and TEMPUS all compute the

surface currents on the object. JRMBOR and CARLOS do that in the frequency

domain, while TEMPUS computes currents in the time domain. TEMPUS then
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converts the surface currents into the frequency domain. TEMPUS computes the

far scattered field via a far field transform, which is a solution of the radiation integral

in terms of a Fourier Transform. This transform operates between scatterer surface

variables and far-field angle variables, rather than between time and frequency as in

the more common Fourier transform application.

Cylinder, sphere and cone targets were simulated in the frequency domain

using a code called JRMBOR. This code is limited to bodies of revolution such as

circular cylinders, cones, ellipsoids, and coaxial combinations thereof. A sphere,

three cylinders of varying length and radius, a cone, and one target which combined

cylinders, were simulated. The tophat and cone targets are illustrated in Figures C.2

and C.3, respectively.

Target radius length
cylinder A 0.5 3.0
cylinder B 0.5 1.0
cylinder C 1.0 2.0

cone 1.0 1.9
tophat 2.25 2.1

Table C.3 Dimensions (inches) of targets simulated with CARLOS code

The output of JRMBOR was in a frequency domain format in magnitude (dB)

and phase (degrees) with five digits of precision. The data was converted into real

and imaginary (I and Q) components, then fed into the IFFT algorithm described

in Section D.2.

Mie series sphere data was compared to data produced by a Method of Mo-

ments code called JRMBOR [111]. The reason for this comparison was to increase

confidence that JRMBOR provides useful data. Mie series data was expected to

agree much better with JRMBOR data than with measured data. In fact, the power

magnitude found from the two data sources matched very well. However, there ap-

peared to be a 90 degree shift on the phase plots, as shown in Figure C.4. This

may have been due to an improperly set phase reference in a JRMBOR input file.
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Figure C.2 Geometry of ‘Tophat’ Target

Figure C.3 Geometry of Cone Target
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Figure C.4 Phase difference, JRMBOR (no phase correction) minus Mie, degrees

The phase error was corrected by simply multiplying the frequency-domain data by

exp(−jπ/2), which shifts the phase of the data by -90 degrees.

The time domain field was different in shape due to the phase shift in the

original JRMBOR data. The frequency range of the data used to generate Figure C.5

was 0.1 to 18 GHz.

A 90 degree phase shift was applied to JRMBOR data on the single sphere.

The result was an excellent match to the Mie series data. JRMBOR data for all

targets was then phase shifted to ensure consistency. The sphere late-time signal

developed from phase-corrected JRMBOR data matched late-time data based on

the Mie series very well. Reconstruction error was 0.17 percent.

The CARLOS software package [138] was used to simulate targets that could

not be simulated using JRMBOR. These included various rectangular objects such

as cubes, blocks, and plates, and combinations thereof. CARLOS is a frequency-

domain, method of moments code suitable for general shapes. The surface of each
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Figure C.5 Sphere backscattered fields, time domain, Mie (dotted) and JRMBOR
(solid) with no phase correction, zero range is center of sphere

target is divided into triangular facets in a grid. A grid generation program suitable

for rectangular boxes was implemented. The grid generation program was used to

produce a new grid for every frequency at which scattering was simulated. For the

rectangular shapes, several simulation runs were conducted using various criteria for

the minimum grid density in points per wavelength (ppw) along each edge. The

minimum grid density was set to 12, 15, and 20 ppw. CARLOS solves the MoM

computation via Galerkin’s method [138], in which the same function is used for

basis and testing [105].

Scattering from several targets was simulated with CARLOS. The targets are

shown in Table C.4 with dimensions, except for the targets called Combo A and

Combo B, which are described below. All of them were illuminated from 0.010 to

5.000 GHz every 0.002 GHz. They were illuminated in both the z̃ − x̃ plane and the

z̃ − ỹ plane at θ angles from 30 to 75 degrees every 3 degrees.
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Target X Y Z
Cube 3.0 3.0 3.0

Block 112 1.0 1.0 2.0
Block 123 1.0 2.0 3.0

Block 123B 1.1 1.9 2.8
Plate 4.5 4.5 0.1

Combo A - - -
Combo B - - -

Table C.4 Dimensions (inches) of targets simulated with CARLOS code

Target Block 123B was designed to be similar to Block 123. The purpose of

Block 123B was to study distinguishability of two targets with the same overall shape

but slightly different measurements.

The targets Combo A and Combo B combined two objects separated by 0.5

inches. Combo A consisted of a Block 123 and a Block 112 oriented as shown in

Figure C.6. Combo B consisted of a Plate and a Block 112 oriented as shown in

Figure C.7.

The various grid densities resulted in slight differences in the signal in the

frequency domain. These differences were centered at only a few wavelengths. In

fact, at several frequencies, there was no difference between the 12, 15, and 20 ppw

cases. Differences tended to be larger at lower frequencies, as shown in Figure C.8.

In the time domain, changes were apparent in the scattered field. Particularly,

the late-time field is noticeably different for the 12, 15 and 20 ppw cases. Figure C.9

shows the late-time scattering developed from 12 ppw and 20 ppw data. In each

case, the late-time signal behaved in accordance with SEM theory in that it could

be represented well by a finite number of damped sinusoid terms and possibly some

non-oscillating decay terms. In addition, the same or nearly the same pole locations

could be estimated from various aspect-angle samples of the same target. But the

poles for grid densities of 12 and 15 ppw were different from the 20 ppw case, which
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Figure C.6 Geometry of ‘Combo A’ Target

Figure C.7 Geometry of ‘Combo B’ Target
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Figure C.8 Real and imaginary components of frequency domain data from 3”
cube, computed with grid densities of 12 ppw (solid line) and 20 ppw (dashed),
focused on lower frequencies
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Figure C.9 Time domain data from 3” cube, computed with grid densities of 12
ppw (solid line) and 20 ppw (dashed), focusing on late time
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was taken to be the best answer because it was the most finely sampled simulation.

The target signatures used in this research were developed from the 20 ppw targets.
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Appendix D. Data Processing

D.1 The Inverse Discrete Fourier Transform

Scattering data was collected in the frequency domain. In other words, each

data point represented the complex scattered field at a single frequency. However, the

scattering phenomenon of interest is seen in time-domain scattering. It was therefore

necessary to transform data from the time domain to the frequency domain using

an Inverse Discrete Fourier Transform (IDFT), or a special case of the IDFT known

as an Inverse Fast Fourier Transform (IFFT) [62,100].

The IFFT of the reflected energy is known loosely as the impulse response.

Here the term is used loosely because a true impulse has infinite bandwidth and zero

duration, while the effective incident wave in this case merely has wide bandwidth

and short practical time duration. While Inverse Laplace Transforms are discussed

elsewhere in this document, the appropriate transform for this application is a variant

of the Inverse Fourier Transform. Each measured data point is associated with real

oscillating frequencies ω only, not complex frequencies s = Ω + jω. The Inverse

Fourier Transform and its discrete variant the IDFT assume frequencies are purely

oscillating, so they are well-suited to the data. In addition, the IDFT is more

amenable to implementation in software than an Inverse Laplace Transform. There

are well known algorithms for the IDFT and IFFT, but there is no widely-used

Inverse Discrete Laplace Transform.

An algorithm was implemented to perform an IFFT on the data and isolate the

late-time response. The script generated negative frequency data, weighted it with

a window function, added zero padding and shifted the negative frequency data

to higher positive frequencies. It then transformed the data, computed the time

and range scales for the time domain data, and isolated a portion of the late-time

response.
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Given the (padded) bandwidth W = N∆t, the total time and sample time of

the signal resulting from the IFFT can be determined. The total time is T , found

via

T = N∆t =
N

N∆f
=

1

∆f
(D.1)

and the sample time is

∆t = T/N =
1

N∆f
= 1/W (D.2)

After the IFFT, the data is in a new form representing the downrange image of

the target as it would be seen by a radar transmitting an equivalent short pulse. The

downrange image shows the field strength in volts versus the number of points. The

number of points can be scaled and shifted appropriately to represent either time or

distance downrange. The downrange image is complex, but only the real portion of

the signal is used. That is because the equivalent signal transmitted by a short pulse

radar (loosely, impulse radar) is a real signal. In a properly implemented IFFT, as

discussed in Section D.2, the imaginary component of the data is much smaller than

the real component, on the order of 300 dB down, so it can be ignored safely.

A script was developed to perform an IFFT on the data and isolate the late-

time response. The script generated negative frequency data, weighted it with a

window function, added zero padding and shifted the negative frequency data to

higher positive frequencies as discussed in Section D.2. It then transformed the data

with an existing IFFT function, computed the time and range scales for the time

domain data, and isolated a portion of the late-time response.

n = [fhigh − flow]/∆t + 1 (D.3)

data points, prior to including negative frequencies and padding with zeros as ex-

plained in Section D.2. Instead of n points, there are now N > n points. Since N
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data points are present in the frequency domain signal, the time domain signal will

include N data points as well, spaced ∆t seconds apart.

Given the (padded) bandwidth W = N∆t, the total time and sample time of

the signal resulting from the IFFT can be determined. The total time is T , found

via

T = N∆t =
N

N∆f
=

1

∆f
(D.4)

and the sample time is

∆t = T/N =
1

N∆f
= 1/W (D.5)

D.2 Negative Frequency Data and the IDFT

For the IDFT (or its IFFT variant) to produce real data in the time domain,

it must have data in complex-conjugate pairs in the frequency domain. The pairs

consist of data points collected at the positive and negative of each frequency. The

positive frequency data is that actually measured or simulated, while each negative

frequency data point is the complex conjugate of the data at each corresponding

positive frequency data point.

The necessary role of the negative frequencies can be seen in the development

of the Discrete Fourier Transform (DFT), which is defined as

Fm =
N−1
∑

n=0

fn exp(−j2πmn/N) (D.6)

The Inverse Discrete Fourier Transform (IDFT) is defined as

fn =
1

N

N−1
∑

m=0

Fm exp(j2πmn/N) (D.7)

Here note that fn = T
N

f(n∆t) and Fm = F (m∆ω). The total time interval

is T and the number of samples is N . For a sampled signal which is real in the
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time-domain, fn is a sequence of real numbers, and F−m = F ∗
m. Again, the negative

frequency components are the conjugates of the positive frequency components.

If an IDFT is applied to complex data, both the negative and positive frequency

components are needed to produce a real signal in the time domain. To reproduce

the equivalent time-domain signal, it is only necessary to conjugate the data already

measured. The output of the IDFT is real in theory, but numerically there is a very

small imaginary component, about 300 dB down from the real signal, which can be

ignored.

D.3 Frequency Data Windowing

A problem specific to measured data is that there is unlikely to be frequency

data near the origin. For measurements taken from 2 to 18 GHz, there is conjugate

data from -18 to -2, but there is a gap from just above -2 GHz to just under 2 GHz.

This gap must be filled with zeros at data points spaced every ∆f apart to ensure

the frequency components are seen at the right frequencies by the IDFT algorithm.

If there is an abrupt transition from data to zeros, the time-domain result will

be corrupted by Gibbs phenomenon [62]. To suppress Gibbs oscillations, various

functions are used to weight the frequency-domain data prior to implementing the

IFFT. These window functions taper the magnitude of the data from its peak in the

center, down to zero or a small number at the edges. Window functions allow for

a smooth transition from measured data to the zero-valued points used to pad the

data. Various windows include the Hann, Blackman, Hamming, Kaiser, Bartlett,

etc. There are some windows that are clearly inappropriate for use with an IFFT. A

boxcar window, essentially no window at all, provides equal weight to each measured

point and no taper, ensuring a harsh transition from data to zeros. The Hamming

window tapers the data magnitude, but not all the way to zero. The end points

of the window are on the order of 0.08, compared to a maximum value of 1. That

makes the Hamming window less attractive than the Hann (often called ‘Hanning’)
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window. The Kaiser window takes on various shapes based on the β parameter. For

β < 7, the Kaiser window has high end points, like the Hamming window or higher,

so it is also less attractive than the Hann window.

One preferred window must be selected. The window should eliminate abrupt

transitions between data and zeros to suppress Gibbs phenomenon. The Gaussian

window has an advantage over the Hann (Hanning) window because it transforms

(via FFT or IFFT) to a Gaussian window in the opposite domain. That assumes a

single window centered at the origin, which works very well when the measurement

bandwidth runs close to DC (ω = 0). Early in the research, it was assumed that

the lower extent of the measured bandwidth had to be tapered as well, because

measurements conducted in the Air Force Institute of Technology range ran from

6.2 to 18.2 GHz, leaving an enormous gap in the middle. The newer measurements

leave a much smaller gap (-2 to 2 GHz), but it is still considerable.

The effect of the window in the time domain must also be considered. Each

set of measurements was processed with one of three different frequency-domain

windows. These were a boxcar (effectively no window), a Hann (Hanning) window,

and a Gaussian window.

Sphere scattering data was generated in the frequency domain using the Mie

series. The window configurations used were a single Gaussian centered at zero

frequency, a pair of Gaussian windows centered at 10 GHz to cover the measured

data and its conjugate at negative frequencies, and a pair of Hann windows. Twin

frequency windows are important because there was a significant gap in data, from

0 to 2 GHz. Considering the negative frequencies, the gap was 4 GHz wide, from -2

to 2 GHz. The transition from data to zero padding would be a sharp one if a taper

was not applied.

Use of twin Hann windows resulted in good looking time-domain sphere data.

The single Gaussian window resulted in a very different looking sphere with a single

pulse up front instead of a triplet, then a very low level in the middle, then a
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singlet creeping wave return. Oddly, the poles estimated for the two time domain

data sets were about the same. The key difference in the appearance of the time

domain signals was the use of two windows instead of one centered at the origin.

The lower frequency contribution will be reduced if twin windows are used, whether

the windows are Gaussian, Hann, or Blackman.

The best result seen for the Mie series data from 2-18 GHz was with the twin

Gaussian windows, shown in Figure D.1. Close to that was the result for twin Hann

windows. The single Gaussian window, shown in Figure D.2, only got a few of the

poles equal to the theoretical result. Most likely, the Gibbs phenomenon caused by

the jump at ± 2 GHz is to blame. Some distortion was seen in the time domain with

the 2-18 GHz Mie series and a single window.

Another set of sphere data was generated via the Mie series from 0.010 to 5.000

GHz, sampled every 0.002 GHz. With the much narrower frequency gap from -0.1

to 0.1 GHz, it was more appropriate to use a single window centered at the origin

to taper the data. The poles estimated for this data when tapered with various

windows are shown ion Figure D.3.

The Blackman window formula is [21,74]:

0.42 + 0.50 cos(πk/K) + 0.08 cos(2πk/K), |k| < K, 0 otherwise (D.8)

The Hann window [62], named for Julius Von Hann but frequently called the

Hanning window [21], is found via:

0.50 + 0.50 cos(πk/K), |k| < K, 0 otherwise (D.9)

The exponential window used in this comparison was given by:

exp[−(5π/2) (k2/K2)], |k| < K, 0 otherwise (D.10)
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Figure D.1 Sphere time domain response calculated with twin Hann windows
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Figure D.2 Sphere time domain response calculated with single Gaussian window
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Figure D.3 Poles estimated from sphere late-time, Mie-series data from 0.010 to
5.000 GHz every 0.002 GHz. Various windows applied prior to IFFT: Hanning (·),
Gaussian (×), Blackman (+). Theoretical sphere poles shown as circles.

Of the three windows studied, there was no clear advantage between the Black-

man and Hanning windows. Either of those appeared to be a better choice than the

Gaussian window used in the analysis. There are many possible implementations of

the Gaussian window, but the problems associated with this implementation would

also be present in other formulations. A single Hanning window was used for all

simulated targets.

D.4 Data Smoothing

A technique was implemented to suppress noise in frequency domain measured

data. The effect of frequency-domain data smoothing on the time-domain signal was

examined as well as its effect on pole estimation.

Smoothing was employed on simulated and measured data. The simulated

data frequently had small jump discontinuities. These occurred at some frequencies
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where the grid density on the object’s surface changed significantly. The quality

of measured data from the AFRL/SNS range is ordinarily vary good, but since the

targets measured were extremely small, the scattered signals were weak.

The script smoothed data by point averaging. Each component of each point

was replaced by an average of its N nearest neighbors on either side, a total of 2N +1

points. The size of N depended on the bandwidth and sampling interval, as well as

the extent of the noise or step discontinuities apparent in the data. Measured data

had a bandwidth of 2.000 to 18.000 GHz and a sampling interval of 0.010 GHz. For

measured data, N = 5 so a band of ±.050 GHz around each frequency was used.

Simulated data had a bandwidth of 0.010 to 5.000 GHz and a sampling interval

of 0.002 GHz. For simulated data, N = 15 so a band of ±.030 GHz around each

frequency was used.

At the high and low ends of the data, the algorithm used as many points

as were available, retaining symmetry around the data point being smoothed. For

example, the fourth data point could only be averaged with the three points below

it, so only the three points above it were used. The average of those seven points

(the current point was included) was written to a new file. An IFFT was performed

on the smoothed data and the M-TLS-MPM algorithm was applied to the resulting

late-time data. The poles from smoothed data had same ω but larger (more negative)

Ω for most poles.

Figures D.4 and D.5 show the results of smoothing frequency domain data.

The target in question was a cube with sides of 0.5 inches, illuminated with θ-

polarized fields. The cube was oriented 25 degrees off of broadside. Two curves are

shown in each figure. They are the real and imaginary components of the scattered

field. Figure D.4 shows the entire bandwidth from 2 to 18 GHz to put the scale into

perspective, while Figure D.5 shows a close-up on one part of the real component of

the field to show more clearly the effectiveness of smoothing. The example chosen

was typical for the small targets that were measured.

D-9



2 4 6 8 10 12 14 16 18
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Frequency, GHz

F
ie

ld
, m

ill
iv

ol
ts

/m
et

er

Figure D.4 Smoothed (dashed) and raw (solid) measured data, Frequency Domain,
2-18 GHz, real and imaginary components shown
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Figure D.5 Smoothed (dashed) and raw (solid) measured data, Frequency Domain,
15-18 GHz, real component shown
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A potential problem introduced by the point-smoothing approach was levelling

of peaks. At the top of a peak in the frequency-domain signal, most or all neighboring

points are below the central point being smoothed. The average of that point and

its neighbors is then biased toward zero. To solve that, a curve-fitting algorithm

was attempted. It was intended to fit quadratic curves to sections of the data, and

replace the original data with the curves. A difficulty inherent in this method was

forcing the end points of the curves to match. Curves were then allowed to overlap

and the overlapping portions were averaged to produce a single smooth signal. The

increased complexity of this approach, as compared to point smoothing, indicated

that a significant amount of development work would have been required. Further

work on this approach was abandoned due to time constraints.

The effect of smoothing on the time domain signal was also examined. Figure

D.6 shows the time domain signals resulting from the smoothed and raw frequency

domain data from the half-inch cube. The difference between the two signals was

very small.

The poles present in the smoothed and unsmoothed data were estimated using

the M-TLS-MPM algorithm discussed in Section 3.2. The results, shown in Fig-

ure D.7, indicated that many of the poles moved toward larger |Ω|, indicating more

rapid damping of the sinusoids. No poles were found above 60 gigaradians per sec-

ond, although the bandwidth extended up to 113 Grad/s. That is consistent with

the results shown in Section 3.3.5, where the M-TLS-MPM algorithm was unable

to estimate the higher-|ω| poles of the sphere when the significance criterion P was

reduced. Higher-|ω| scattering modes tend to have less energy, thus are harder to

estimate, than lower-|ω| modes in the sphere data.
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Figure D.6 Smoothed (solid) and raw (dashed) measured data, Time Domain,
half-inch cube
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